Answer on Question \#83342 - Math - Statistics and Probability

It is known that only 60% of a defective computer can be repaired. A sample of eight computers is selected randomly. Find the probability of:

Question

(a) At most, three computers can be repaired

Solution

For the binomial distribution,

$$
P(x=k)=C_{n}^{k} p^{k} q^{n-k}
$$

The probability of success is

$$
p=0.6
$$

probability of failure is

$$
q=1-p=0.4
$$

the number of trials is

$$
n=8
$$

Thus, we have to find

$$
\begin{gathered}
P(x \leq 3)=P(0)+P(1)+P(2)+P(3) \\
P(0)=q^{n}=0.4^{8}=0.00066 \\
P(1)=\frac{8!}{1!7!} \cdot 0.6^{1} \cdot 0.4^{7}=0.00786 \\
P(2)=\frac{8!}{2!6!} \cdot 0.6^{2} \cdot 0.4^{6}=0.04129 \\
P(3)=\frac{8!}{3!5!} \cdot 0.6^{3} \cdot 0.4^{5}=\frac{6 \cdot 7 \cdot 8}{6} \cdot 0.6^{3} \cdot 0.4^{5}=0.12386
\end{gathered}
$$

$$
P(x \leq 3)=0.00066+0.00786+0.04129+0.12386=0.17367
$$

Answer: $P(x \leq 3)=0.17367$.

Question

(b) Five or less can be repaired

Solution

$$
\begin{gathered}
P(x \leq 5)=P(x \leq 3)+P(4)+P(5) \\
P(4)=\frac{8!}{4!4!} \cdot 0.6^{4} \cdot 0.4^{4}=\frac{5 \cdot 6 \cdot 7 \cdot 8}{2 \cdot 3 \cdot 4} \cdot 0.6^{4} \cdot 0.4^{4}=0.23224 \\
P(5)=\frac{8!}{3!5!} \cdot 0.6^{5} \cdot 0.4^{3}=0.27869 \\
P(x \leq 5)=0.17367+0.23224+0.27869=0.68460
\end{gathered}
$$

Answer: $P(x \leq 5)=0.68460$.

Question

(c) None can be repaired

Solution

$$
P(0)=q^{n}=0.4^{8}=0.00066
$$

Answer: $P(0)=0.00066$.

