Answer on Question \#83335 - Math - Analytic Geometry

Question

(1) If $r=2 i-4 j, s=2 i+6 j, t=3 i-j$, find $2 r-t+s$

Solution

$2 r-t+s=2(2 i-4 j)-(3 i-j)+2 i+6 j=3 i-j$

Question

(2) Find the equation of the tangent to the curve $y=x^{3}-x^{2}$ at the point $(1,0)$.

Solution

Find the first derivative with respect to x

$$
y^{\prime}=\left(x^{3}-x^{2}\right)^{\prime}=3 x^{2}-2 x
$$

Find the slope of the tangent line

$$
\text { slope }=m=y^{\prime}(1)=3(1)^{2}-2(1)=1
$$

The equation of the tangent to the curve in point slope form

$$
y-0=1(x-1)
$$

The equation of the tangent to the curve in slope-intercept form

$$
y=x-1
$$

Question

(3) Find the area of a triangle with vertices $(3,1),(0,0)$ and $(1,2)$.

Solution

Let $A(3,1), O(0,0)$, and $B(1,2)$ be the vertices of a triangle.
$\overrightarrow{O A}=\left(x_{A}-x_{O}, y_{A}-y_{O}\right)=(3-0,1-0)=(3,1)$
$\overrightarrow{O B}=\left(x_{B}-x_{O}, y_{B}-y_{O}\right)=(1-0,2-0)=(1,2)$
Find the cross product
$\overrightarrow{O A} \times \overrightarrow{O B}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 3 & 1 & 0 \\ 1 & 2 & 0\end{array}\right|=\vec{\imath}\left|\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right|-\vec{\jmath}\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right|+\vec{k}\left|\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right|=0 \vec{\imath}-0 \vec{\jmath}+5 \vec{k}$
$S_{\triangle A B O}=\frac{1}{2}\|\overrightarrow{O A} \times \overrightarrow{O B}\|=\frac{1}{2}(5)=\frac{5}{2}\left(\right.$ units $\left.^{2}\right)$

Question

(4) If the point $C(2,-1)$ be the centre of a circle that passes through the point $A(-2,2)$ find the equation of the circle.

Solution

The equation of the circle with center at (h, k) and radius r

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Substitute and find r

$$
\begin{gathered}
(-2-2)^{2}+(2-(-1))^{2}=r^{2} \\
r^{2}=25=>r=5
\end{gathered}
$$

The equation of the circle with center at $C(2,-1)$ and radius 5

$$
(x-2)^{2}+(y+1)^{2}=25
$$

Question

(5) If $r=2 i-4 j, s=2 i+6 j, t=3 i-j$, find magnitude of the vector $2 r-t+s$

Solution

$2 r-t+s=2(2 i-4 j)-(3 i-j)+2 i+6 j=3 i-j$
Find magnitude of the vector $2 r-t+s$

$$
\|2 r-t+s\|=\sqrt{(3)^{2}+(-1)^{2}}=\sqrt{10}
$$

Question

(6) P, Q and R are points $(1,-6),(3,6)$ and $(5,2)$ respectively. Determine the length of the line joining the midpoint of $P Q$ and $Q R$.

Solution

The midpoint of two points

$$
x_{m}=\frac{x_{1}+x_{2}}{2}, y_{m}=\frac{y_{1}+y_{2}}{2}
$$

The midpoint of $P Q$

$$
x_{m P Q}=\frac{1+3}{2}=2, y_{m P Q}=\frac{-6+6}{2}=0
$$

The midpoint of $Q R$

$$
x_{m Q R}=\frac{3+5}{2}=4, y_{m Q R}=\frac{6+2}{2}=4
$$

Determine the length of the line joining the midpoint of $P Q$ and $Q R$.

$$
l=\sqrt{(4-2)^{2}+(4-0)^{2}}=2 \sqrt{5}
$$

Question

(7) Find the equation of a straight line passing through the points $(2,3)$ and $(-2,5)$.

Solution

Gradient (slope) of a straight line

$$
\operatorname{grad}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{-2-2}=-\frac{1}{2}
$$

The equation of the line

$$
y=-\frac{1}{2} x+b
$$

Substitute and find b

$$
3=-\frac{1}{2}(2)+b=>b=4
$$

The equation of a straight line passing through the points $(2,3)$ and $(-2,5)$.

$$
y=-\frac{1}{2} x+4
$$

Question

(8) Let $Z_{1}=6 \vec{\imath}-4 \vec{\jmath}+4 \vec{k}, Z_{2}=\vec{\imath}+6 \vec{\jmath}-\vec{k}$, find magnitude of the cross product $\overrightarrow{Z_{1}} \times \overrightarrow{Z_{2}}$.

Solution

Find the cross product $\overrightarrow{Z_{1}} \times \overrightarrow{Z_{2}}$
$\overrightarrow{Z_{1}} \times \overrightarrow{Z_{2}}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 6 & -4 & 4 \\ 1 & 6 & -1\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}-4 & 4 \\ 6 & -1\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}6 & 4 \\ 1 & -1\end{array}\right|+\vec{k}\left|\begin{array}{cc}6 & -4 \\ 1 & 6\end{array}\right|=$
$=\vec{\imath}(-4(-1)-4(6))-\vec{\jmath}(6(-1)-4(1))+\vec{k}(6(6)-(-4)(1))=$
$=-20 \vec{\imath}+10 \vec{\jmath}+40 \vec{k}$
Find magnitude of the cross product $\overrightarrow{Z_{1}} \times \overrightarrow{Z_{2}}$

$$
\left\|\overrightarrow{Z_{1}} \times \overrightarrow{Z_{2}}\right\|=\sqrt{(-20)^{2}+(10)^{2}+(40)^{2}}=10 \sqrt{21}
$$

Question

(9) Find the equation of the normal to the curve $y=x^{3}-x^{2}$ at the point $(1,1)$.

Solution

Find the first derivative with respect to x

$$
y^{\prime}=\left(x^{3}-x^{2}\right)^{\prime}=3 x^{2}-2 x
$$

Find the slope of the normal line

$$
\text { slope }=m=-\frac{1}{y^{\prime}(1)}=-\frac{1}{3(1)^{2}-2(1)}=-1
$$

The equation of the normal to the curve in point slope form

$$
y-1=-1(x-1)
$$

The equation of the normal to the curve in slope-intercept form

$$
y=-x+2
$$

