Answer on Question \#83324 - Math - Calculus

Question

Find the maximum possible domain, and the corresponding range of the function f given by:

$$
f(x)=\frac{1}{1+\cos x}
$$

Solution

Let's find the domain, that is, values of x for which the function is not defined. The denominator of the fraction is zero.
$1+\cos x=0$
$\cos x=-1$
$x=\pi+2 \pi k, k \in Z$
In this case, x belongs to $(-\infty ;+\infty) \backslash\{\pi+2 \pi k, k \in Z\}$
Let's find the range, the region in which y is defined.
$(f(x))^{\prime}=\left(\frac{1}{1+\cos x}\right)^{\prime}=\frac{\sin x}{(1+\cos x)^{2}}$
The function reaches an extremum if the value of its derivative is zero.
$\frac{\sin x}{(1+\cos x)^{2}}=0$
$x=\pi t, t \in Z$
However, the denominator should not be equal to zero; therefore, only the values:
$x=2 \pi t, t \in Z$
Substitute the value of this point to find out the value of the function at the extremum.

$$
\begin{aligned}
& f(0)=\frac{1}{1+\cos (0)}=\frac{1}{2} \\
& \lim _{x \rightarrow \pi k,} f(x \in Z=+\infty
\end{aligned}
$$

In this case, y belongs to $[0.5,+\infty$)

Answer:

The domain of the function is $(-\infty,+\infty) \backslash\{\pi+2 \pi k, k \in Z\}$, and the range of the function is $[0.5,+\infty)$.

