Answer on Question \#83321 - Math - Calculus Question

Find the maximum and minimum values of the curve and distinguish them. $y=x^{\wedge} 3-6 x^{\wedge} 2+9 x+6$

Solution

$$
\begin{aligned}
& \mathrm{y}=\mathrm{x}^{3}-6 \mathrm{x}^{2}+9 \mathrm{x}+6 \\
& y^{\prime}=3 \cdot x^{2}-12 \cdot x+9 \\
& y^{\prime}=0, \quad 3 \cdot x^{2}-12 \cdot x+9=0, \quad x=3, \quad x=1 \\
& y(1)=10, \quad y(3)=6 \\
& y^{\prime \prime}=6 \cdot x-12, \\
& y^{\prime \prime}(1)=-6<0 \quad \text { hence, } x=1 \text { is a point of maximum. } \\
& y^{\prime \prime}(3)=6>0 \\
& \begin{array}{|c|c|c|}
\hline x & \text { hence } x=3 \text { is a point of minimum. } \\
\hline y & 1 & 3 \\
\hline y^{\prime} & 10 & 6 \\
\hline y^{\prime \prime} & 0 & 0 \\
\hline \text { Conclusion } & \cap, \text { max } & 6 \\
\hline
\end{array}
\end{aligned}
$$

Graph of the function: $y=x^{3}-6 x^{2}+9 x+6$

