Answer to Question \#83269-Math - Calculus

Question:

Find the maximum and minimum values of the curve and distinguish them. $y=x^{\wedge} 3-6 x^{\wedge} 2+9 x+6$

Solution:

$$
\begin{aligned}
& y=x^{3}-6 x^{2}+9 x+6 \\
& y^{\prime}=3 x^{2}-12 x+9 \\
& y^{\prime \prime}=6 x-12
\end{aligned}
$$

To find critical points, take $y^{\prime}=0$
$3 x^{2}-12 x+9=0$
$x^{2}-4 x+3=0$
$(x-1)(x-3)=0$
The critical points are $x=1$ and $x=3$.
When $x=1, y^{\prime \prime}=6(1)-12=-6<0$.
Hence the function has a local maximum at $x=1$.
Local maximum value of the function $=y=1^{3}-6(1)^{2}+9(1)+6=1-6+9+6=10$.
When $x=3, y^{\prime \prime}=6(3)-12=6>0$.
Hence the function has a local minimum at $x=3$.
Local minimum value of the function $=y=3^{3}-6(3)^{2}+9(3)+6=27-54+27+6=6$.
The Domain of the function $y=x^{3}-6 x^{2}+9 x+6$ is $(-\infty, \infty)$.

x	$(-\infty, 1)$	1	$(1,3)$	3	$(3, \infty)$
Sign of y^{\prime}	Positive	0	Negative	0	Positive
Graph of y	Increasing	Maximum	Decreasing	Minimum	Increasing

Absolute maximum value of $y=\infty$ at $x=\infty$.
Absolute minimum value of $y=-\infty$ at $x=-\infty$.
Local maximum value of $y=10$ at $x=1$.
Local minimum value of $y=6$ at $x=3$.

