Answer on Question \#83181- Math - Differential Equations

Question

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=4 \cos t+2 \sin t, x(0)=0 ; x(0)=3
$$

Solution

Solve second order linear nonhomogeneous differential equation with constant coefficients.

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=4 \cos t+2 \sin t
$$

The general solution of a nonhomogeneous equation is the sum of the general solution $x_{0}(t)$ of the related homogeneous equation and a particular solution $x_{1}(t)$ of the nonhomogeneous equation:

$$
x(t)=x_{0}(t)+x_{1}(t)
$$

First we solve the related homogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=0
$$

Find the roots of the corresponding characteristic equation:

$$
\begin{gathered}
k^{2}+2 k+2=0 \\
D=2^{2}-4 \cdot 2=-4=4 i^{2}, \text { so } k_{1,2}=\frac{-2 \pm \sqrt{4 i}}{2}=-1 \pm i
\end{gathered}
$$

If the roots of the characteristic equation are the complex numbers $k_{1,2}=\alpha \pm i \beta$, then the general solution of the homogeneous equation $x(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)$. In our case we have:

$$
x_{0}(t)=e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)
$$

Now find the particular solution $x_{1}(\mathrm{t})$ of the nonhomogeneous equation. The right side of a nonhomogeneous differential equation is the combination of trigonometric functions. In this case, it's more convenient to look for a solution using the method of undetermined coefficients. Write the particular solution $x_{1}(\mathrm{t})$ in the form:

$$
x_{1}(t)=A \cos t+B \sin t, \text { where } A, B \text { are the undetermined coefficients. }
$$

Find $\frac{d x_{1}}{d t}, \frac{d^{2} x_{1}}{d t^{2}}$:

$$
\frac{d x_{1}}{d t}=-A \sin t+B \cos t
$$

$$
\frac{d^{2} x_{1}}{d t^{2}}=-A \cos t-B \sin t
$$

Substitute them back into the original differential equation:

$$
\begin{gathered}
-A \cos t-B \sin t-2 A \sin t+2 B \cos t+2 A \cos t+2 B \sin t=4 \cos t+2 \sin t \\
(A+2 B) \cos t+(B-2 A) \sin t=4 \cos t+2 \sin t
\end{gathered}
$$

Therefore we can write the following system of equations to determine the coefficients A, B :

$$
\left\{\begin{array}{l}
A+2 B=4, \\
B-2 A=2,
\end{array} \begin{array}{c}
A+4 A+4=4, \\
B=2 A+2,
\end{array},\left\{\begin{array}{l}
A=0 \\
B=2 .
\end{array}\right.\right.
$$

Thus, the particular solution has the form:

$$
x_{1}(t)=2 \sin t .
$$

Respectively, the general solution of the original nonhomogeneous equation is written as:

$$
x(t)=e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)+2 \sin t .
$$

Find the solution with the initial conditions $x(0)=0 ; x(0)=3$.

$$
x(0)=e^{0}\left(C_{1} \cos 0+C_{2} \sin 0\right)+2 \sin 0=C_{1} .
$$

So we have that $C_{1}=0$ and $C_{1}=3$. But it's impossible and the solution with the initial conditions $x(0)=0 ; x(0)=3$ doesn't exist.

But if the initial conditions $x(0)=0 ; x^{\prime}(0)=3$ should be considered we can find the solution. First find $x^{\prime}(t)$:

$$
\begin{gathered}
x^{\prime}(t)=-e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)+e^{-t}\left(-C_{1} \sin t+C_{2} \cos t\right)+2 \cos t, \\
x^{\prime}(0)=-e^{0}\left(C_{1} \cos 0+C_{2} \sin 0\right)+e^{0}\left(-C_{1} \sin 0+C_{2} \cos 0\right)+2 \cos 0=-C_{1}+C_{2}+2,
\end{gathered}
$$

So

$$
\left\{\begin{array} { c }
{ C _ { 1 } = 0 , } \\
{ - C _ { 1 } + C _ { 2 } + 2 = 3 , }
\end{array} \left\{\begin{array}{l}
C_{1}=0, \\
C_{2}=1 .
\end{array}\right.\right.
$$

Therefore, the solution of the initial-value problem is:

$$
x(t)=e^{-t}(0 \cdot \cos t+1 \cdot \sin t)+2 \sin t=e^{-t} \sin t+2 \sin t
$$

Answer: The solution doesn't exist for the initial conditions $x(0)=0 ; x(0)=3$.
For the initial conditions $x(0)=0 ; x^{\prime}(0)=3$ the solution of the initial-value problem is

$$
x(t)=e^{-t} \sin t+2 \sin t .
$$

