Answer on Question \#83137 - Math - Calculus

Question

Given a function f, defined on R by $f(x)=x^{2} /\left(x^{2}+4\right), I=1$ and $\varepsilon=0.1$, find $k>0$ such that $x>k=>$ $|f(x)-1|<\varepsilon$.

Solution

We have $f(x)-1=\left(x^{2}-\left(x^{2}+4\right)\right) /\left(x^{2}+4\right)=-4 /\left(x^{2}+4\right)$, so that $|f(x)-1|=4 /\left(x^{2}+4\right)$. The inequality $|f(x)-1|<\varepsilon$ then reads $4 /\left(x^{2}+4\right)<\varepsilon$ and has solution $x^{2}>4 / \varepsilon-4$. Substituting $\varepsilon=0.1$, we get $x^{2}>36$, hence $|x|>6$.
Answer: $k=6$.

