Answer on Question \#83136 - Math - Calculus

Question

3. Let f and h be functions, defined on R by
$f(x)=x^{3}-3 x^{2}-4 x+12$ and $h(x)=\{f(x) /(x-3)$, for x not equal to 3 ,
$\{k$ for $x=3$.
(i) Find all the roots of $f(x)=0$.
(ii) Find the value of k that makes h continuous at $x=3$.
(iii) Using the value of k found in (ii) above, determine if h is an even function or not.

Solution

(i) Note that $x=3$ is a root of $f(x)=0$. Using this, and factorizing $f(x)$, we have $f(x)=x^{3}-3 x^{2}-4 x+12=(x-3)(x-2)(x+2)$.
Answer: the roots of $f(x)=0$ are 3,2 , and -2 .
(ii) Using the previous result, we have $h(x)=f(x) /(x-3)=x^{2}-4$ for x not equal to 3. By continuity, this function extends to $x=3$ with the result $h(3)=3^{2}-4=5$.
Answer: $k=5$.
(iii) The constructed continuous function $h(x)=x^{2}-4$ is obviously even.

Answer: it is even.

