Answer on Question \# 83135

We have given the function $f(x)=(x-2) \log (x)$ in $[1,2]$
Since $f(x)$ is continuous in the interval $[1,2]$ and is differentiable in $(1,2)$.
And we also have $f(1)=f(2)$, then by Rolle's theorem there exist a c in $(1,2)$ such that $f^{\prime}(c)=0$
i.e we have $f^{\prime}(x)=\frac{1}{x}(x-2)+\log (x)$

So we have $f^{\prime}(x)=\frac{(x-2)+x \log (x)}{x}=0$
i.e $(x-2)+x \log (x)=0$ and since $f^{\prime}(c)=0$, i.e we have $(c-2)+c \log (c)=0$ This implies that equation $(x-2)+x \log (x)=0$ has a zero in $(1,2)$.

