Answer on Question \#83130 - Math - Statistics and Probability

Question

Let W be a random variable giving the number of heads minus the number of tails in FOUR tosses of a coin. List the elements of the sample space S for the FOUR tosses of the coin and to each sample point assign a value w of W.
b) Find the probability distribution in tabular form.
c) Find the probability mass function for W.

Solution

The elements of the sample space S for the FOUR tosses of the coin are:
$W=\{-4,-2,0,2,4\}$
b) The probability distribution in tabular form:

w	-4	-2	0	2	4
$P(w)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

Where \boldsymbol{w} is a value of W , and $P(w)$ is probability of w
c) The probability mass function for W :
$P(w)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Where \boldsymbol{p} is probability of heads in ONE toss of a coin, $\boldsymbol{p}=1 / 2,(1-p)=1 / 2$
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$,
$k=\frac{w}{2}+2, \quad n=4$.
Thus, $P(w)=\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{4!}{\left(\frac{w}{2}+2\right)!\left(4-\frac{w}{2}-2\right)!} *\left(\frac{1}{2}\right)^{4}=\frac{24}{16 *\left(2+\frac{w}{2}\right)!\left(2-\frac{W}{2}\right)!}$

Answer:

The elements of the sample space S for the FOUR tosses of the coin are:
$W=\{-4,-2,0,2,4\}$
b) The probability distribution in tabular form:

w	-4	-2	0	2	4
$\mathrm{P}(\mathrm{w})$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

c) The probability mass function for W :
$P(w)=\frac{24}{16 *\left(2+\frac{w}{2}\right)!\left(2-\frac{w}{2}\right)!}$.

