Answer on Question \#83090 - Math - Functional Analysis Question

If $f(x)=f(y)$ for every bounded linear functional f on a normed space X, show that $x=y$.

Solution

It is false.
Let $f(x)$ be different from 0 bounded linear functional f, write its kernel:
$\operatorname{Ker} f=\{x \in X: f(x)=0\} \neq 0$ and take $x_{0} \in \operatorname{Ker} f, x_{0} \neq 0$ (such an element x_{0} always exists) then for elements $x+x_{0}$ and x we have $f\left(x+x_{0}\right)=f(x)+f\left(x_{0}\right)=f(x)$ but $x \neq x+x_{0}$.

Answer: It is false.

