Let's consider a particular case of Taylor Series, in the region near $x=0$. Such a polynomial is called the Maclaurin Series. The infinite series expansion for $f(x)$ about $x=0$ becomes:

$$
f(x) \approx f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{\text {iv }}(0)}{4!} x^{4}+\ldots
$$

Let's find the Maclaurin Series expansion for $f(x)=\sin x$:

$$
\sin x=\sin 0+x \cos 0+\frac{x^{2} \sin 0}{2}+\frac{x^{3} \cos 0}{3!}+\cdots=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\cdots
$$

and for $f(x)=\cos x$:

$$
\cos x=\cos 0+x \sin 0+\frac{x^{2} \cos 0}{2}+\frac{\mathrm{x}^{3} \sin 0}{3!}+\cdots=1-\frac{1}{2} x^{3}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots
$$

We plot our answer to see if the polynomial is a good approximation to $f(x)=\sin x$.

We observe that our polynomial (in red) is a good approximation to $f(x)=\sin x$ (in blue) near $x=$ 0 . In fact, it is quite good between $-3 \leq x \leq 3$. So, the statement that the Maclaurin series converge to their respective function for all x is wrong.

