Answer on Question \#83036 - Math - Analytic Geometry

Question

line $A B$ passes through the point $P(3,-2)$ with gradient $-1 / 2$, determine the equation of the line $C D$ through P perpendicular to $A B$.

$$
\begin{gathered}
\text { Solution } \\
\text { AB: } y=\mathrm{k}_{1} \mathrm{x}+\mathrm{b}_{1} \\
\mathrm{CD}: y=\mathrm{k}_{2} x+\mathrm{b}_{2} \\
\mathrm{CD}: \mathrm{y}-\mathrm{y}_{0}=\mathrm{k}_{2}\left(\mathrm{x}-\mathrm{x}_{0}\right)
\end{gathered}
$$

It is given that $C D$ is perpendicular to $A B=>k_{2}=-\frac{1}{k_{1}}$,
where k_{1} is the gradient of $A B$ and k_{2} is the gradient of $C D$;

$$
\mathrm{k}_{1}=-\frac{1}{2}=>\mathrm{k}_{2}=-\frac{1}{-\frac{1}{2}}=2
$$

Besides, $C D$ goes through the point $P(3,-2)$. Thus, $\mathrm{k}_{2}=2, x_{0}=3, y_{0}=-2$. Finally,

$$
\begin{gathered}
C D: y-(-2)=2(x-3) \\
y+2=2 x-6 \\
y=2 x-6-2 \\
y=2 x-8
\end{gathered}
$$

Answer: $\mathrm{y}=2 \mathrm{x}-8$.

