if $f(x)=x^{\wedge} n$, where n is an element of N, show that $f^{\prime}(a)=n a^{\wedge} n-1$ for any a.

To prove the power rule for differentiation, we use the definition of the derivative as a limit. But first, note the factorization for $n \geq 1$:

$$
f(x)-f(a)=x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}\right)
$$

Using this, we can see that

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=\lim _{x \rightarrow a} x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}
$$

Since the division has been eliminated and we have a continuous function, we can freely substitute to find the limit:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}=a^{n-1}+a^{n-1}+\cdots+a^{n-1}+a^{n-1}=n \cdot a^{n-1}
$$

The case of $n=0$ is trivial because $x^{0}=1$, so

$$
\frac{d}{d x} 1=0=0 \cdot x^{-1}
$$

The use of the quotient rule allows the extension of this rule for n as a negative integer, and the use of the laws of exponents and the chain rule allows this rule to be extended to all rational values of n. For an irrational n, a rational approximation is appropriate.

