Answer on Question \#82986 - Math - Calculus

Question

find the intervals in R over which definite integral $(-1$ to $x)$ of $(t+1)^{\wedge} 3 . e^{\wedge} t$.dt is decreasing

Solution

Let $f(x)=\int_{-1}^{x}(t+1)^{3} e^{t} d t$. Then $f^{\prime}(x)=(x+1)^{3} e^{x}$.
In order to find the interval over which the function $f(x)$ decreases, it is necessary to solve the inequality $f^{\prime}(x)<0$. That is $(\boldsymbol{x}+\mathbf{1})^{3} e^{x}<\mathbf{0}$.
Since $\boldsymbol{e}^{\boldsymbol{x}}>\mathbf{0}$ for any x , then $\boldsymbol{f}^{\prime}(\boldsymbol{x})<0$ for $(\boldsymbol{x}+\mathbf{1})^{3}<\mathbf{0}$, i.e. for $\boldsymbol{x}<-\mathbf{1}$.

Answer:

$\boldsymbol{x} \in(-\infty ;-\mathbf{1})$ is interval over which definite integral $(-1$ to x$)$ of $(\mathrm{t}+1)^{\wedge} 3 . \mathrm{e}^{\wedge} \mathrm{t} . \mathrm{dt}$ is decreasing.

