ANSWER on Question \#82982 - Math - Calculus
 QUESTION

Definite integral:

Integral of uppercase square root of $\mathrm{pi} / 2$ and lower case 0 xe raise to $2 \mathrm{x} \cos \mathrm{x}$ squared dx

$$
\int_{0}^{\sqrt{\pi / 2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x
$$

Or

$$
\int_{0}^{\sqrt{\pi} / 2} x \cdot e^{2 x} \cdot \cos ^{2} x d x
$$

SOLUTION

first we find the indefinite integral

$$
\begin{gathered}
\int x \cdot e^{2 x} \cdot \cos ^{2} x d x=\int x \cdot e^{2 x} \cdot\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot(1+\cos 2 x) d x= \\
=\frac{1}{2} \cdot \int x \cdot e^{2 x} d x+\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=I_{1}+I_{2} \\
I_{1}=\frac{1}{2} \cdot \int x \cdot e^{2 x} d x=\left[\begin{array}{c}
u=x \rightarrow d u=d x \\
\left.d v=e^{2 x} d x \rightarrow v=\frac{1}{2} \cdot e^{2 x}\right]=\frac{1}{2} \cdot\left(x \cdot \frac{1}{2} \cdot e^{2 x}-\int \frac{1}{2} \cdot e^{2 x} d x\right)= \\
=\frac{x \cdot e^{2 x}}{4}-\frac{1}{4} \cdot \frac{1}{2} \cdot e^{2 x}+C=\frac{x \cdot e^{2 x}}{4}-\frac{e^{2 x}}{8}+C=\frac{e^{2 x}}{8} \cdot(2 x-1)+C \\
I_{1}=\frac{1}{2} \cdot \int x \cdot e^{2 x} d x=\frac{e^{2 x}}{8} \cdot(2 x-1)+C \\
I_{2}=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=\left[\begin{array}{c}
\left.2 x=t \rightarrow x=\frac{t}{2}\right]=\frac{1}{2} \cdot \int \frac{t}{2} \cdot e^{t} \cdot \cos t \frac{d t}{2}= \\
d x=\frac{d t}{2}
\end{array}\right. \\
=\frac{1}{8} \cdot \int t \cdot e^{t} \cdot \cos t d t=
\end{array} .\right.
\end{gathered}
$$

Now we'll use two formulas:

$$
\begin{aligned}
& \int e^{t} \cdot \cos t d t=\frac{e^{t}}{2} \cdot(\sin t+\cos t) \\
& \int e^{t} \cdot \sin t d t=\frac{e^{t}}{2} \cdot(\sin t-\cos t)
\end{aligned}
$$

Then,

$$
\begin{gathered}
I_{2}=\frac{1}{8} \cdot \int t \cdot e^{t} \cdot \cos t d t=\left[\begin{array}{c}
u=t \rightarrow d u=d t \\
d v=e^{t} \cdot \cos t d t \rightarrow v=\frac{e^{t}}{2} \cdot(\sin t+\cos t)
\end{array}\right]= \\
=\frac{1}{8} \cdot\left(\frac{t \cdot e^{t}}{2} \cdot(\sin t+\cos t)-\int \frac{e^{t}}{2} \cdot(\sin t+\cos t) d t\right)= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\int e^{t} \sin t d t-\int e^{t} \cos t d t\right)= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(\sin t-\cos t)-\frac{e^{t}}{2} \cdot(\sin t+\cos t)\right)+C= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(\sin t-\cos t+\sin t+\cos t)\right)+C= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(2 \sin t)\right)=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-e^{t} \sin t\right)+C= \\
=\frac{e^{t}}{16} \cdot((t-1) \cdot \sin t+t \cdot \cos t)+C \\
I_{2}=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))+C
\end{gathered}
$$

Conclusion,

$$
\int x \cdot e^{2 x} \cdot \cos ^{2} x d x=I_{1}+I_{2}=\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))+C
$$

Then,

$$
\int_{0}^{\sqrt{\pi / 2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))\right)\right|_{0} ^{\sqrt{\pi / 2}} \approx 1.5727
$$

and

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi} / 2} x \cdot e^{2 x} \cdot & \cos ^{2} x d x=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))\right)\right|_{0} ^{\sqrt{\pi} / 2}= \\
= & \left(\frac{e^{\sqrt{\pi}}}{8} \cdot(\sqrt{\pi}-1)+\frac{e^{\sqrt{\pi}}}{16} \cdot((\sqrt{\pi}-1) \cdot \sin (\sqrt{\pi})+\sqrt{\pi} \cdot \cos (\sqrt{\pi}))\right)- \\
& \quad-\left(\frac{e^{0}}{8} \cdot(0-1)+\frac{e^{0}}{16} \cdot((0-1) \cdot \sin (0)+0 \cdot \cos (0))\right)= \\
= & \frac{e^{\sqrt{\pi}}}{16} \cdot(2 \cdot(\sqrt{\pi}-1)+(\sqrt{\pi}-1) \cdot \sin (\sqrt{\pi})+\sqrt{\pi} \cdot \cos (\sqrt{\pi}))-\left(-\frac{1}{8}\right)= \\
= & \frac{e^{\sqrt{\pi}}}{16} \cdot(2 \cdot(\sqrt{\pi}-1)+(\sqrt{\pi}-1) \cdot \sin (\sqrt{\pi})+\sqrt{\pi} \cdot \cos (\sqrt{\pi}))+\frac{2}{16}= \\
= & \frac{1}{16} \cdot\left(2+e^{\sqrt{\pi}} \cdot[\sqrt{\pi} \cdot \cos (\sqrt{\pi})+(\sqrt{\pi}-1) \cdot(2+\sin (\sqrt{\pi}))]\right) \approx 0.8411
\end{aligned}
$$

Conclusion,

$$
\int_{0}^{\sqrt{\pi} / 2} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\frac{1}{16} \cdot\left(2+e^{\sqrt{\pi}} \cdot[\sqrt{\pi} \cdot \cos (\sqrt{\pi})+(\sqrt{\pi}-1) \cdot(2+\sin (\sqrt{\pi}))]\right) \approx 0.8411
$$

ANSWER:

$\int_{0}^{\sqrt{\frac{\pi}{2}}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))\right)\right|_{0} ^{\sqrt{\frac{\pi}{2}}} \approx 1.5727$
Or

$$
\int_{0}^{\sqrt{\pi} / 2} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\frac{1}{16} \cdot\left(2+e^{\sqrt{\pi}} \cdot[\sqrt{\pi} \cdot \cos (\sqrt{\pi})+(\sqrt{\pi}-1) \cdot(2+\sin (\sqrt{\pi}))]\right) \approx 0.8411
$$

