Answer on Question \#82973 - Math - Analytic Geometry

Question

Show that the points $(-1,-2),(5,4),(-3,0)$ are the vertices of a right triangle, and find its area.

Solution

Let points be $A(-1,-2), B(5,4)$ and $C(-3,0)$. Now let's check whether the points are on the one straight line. Find equation of the straight line AB :

$$
\begin{aligned}
& \frac{x-x_{B}}{x_{A}-x_{B}}=\frac{y-y_{B}}{y_{A}-y_{B}} \\
& \frac{x-5}{-1-5}=\frac{y-4}{-2-4} \\
& \frac{x-5}{-6}=\frac{y-4}{-6} \\
& x-5=y-4 \\
& y=x-1
\end{aligned}
$$

If point C belongs to the line AB , its coordinates satisfies the equation: $y=x-1$:

$$
\begin{gathered}
0=-3-1 \\
0 \neq-4
\end{gathered}
$$

We make sure that the point C does not belong to the line AB . It also means that these points form the triangle ABC. Now let's check if it is right.

Find the coordinates of vectors $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{A C}$:

$$
\begin{gathered}
\overrightarrow{A B}=\left\{x_{B}-x_{A}, y_{B}-y_{A}\right\}=\{5-(-1), 4-(-2)\}=\{6,6\} \\
\overrightarrow{B C}=\left\{x_{C}-x_{B}, y_{C}-y_{B}\right\}=\{-3-5,0-4\}=\{-8,-4\} \\
\overrightarrow{A C}=\left\{x_{C}-x_{A}, y_{C}-y_{A}\right\}=\{-3-(-1), 0-(-2)\}=\{-2,2\}
\end{gathered}
$$

Now find angles between vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$ (named α), $\overrightarrow{B C}$ and $\overrightarrow{A C}$ (named β), $\overrightarrow{A C}$ and $\overrightarrow{A B}$ (named γ):

$$
\begin{aligned}
& \alpha=\arccos \left(\frac{x_{A B} * x_{B C}+y_{A B} * y_{B C}}{|A B| *|B C|}\right)=\arccos \left(\frac{6 *(-8)+6 *(-4)}{\sqrt{6^{2}+6^{2}} * \sqrt{(-8)^{2}+(-4)^{2}}}\right)= \\
= & \arccos \left(-\frac{72}{6 * \sqrt{2} * 4 * \sqrt{5}}\right)=\arccos \left(-\frac{3}{\sqrt{10}}\right)
\end{aligned}
$$

$\beta=\arccos \left(\frac{x_{A C} * x_{B C}+y_{A C} * y_{B C}}{|A C| *|B C|}\right)=\arccos \left(\frac{(-2) *(-8)+2 *(-4)}{\sqrt{(-2)^{2}+2^{2}} * \sqrt{(-8)^{2}+(-4)^{2}}}\right)=$
$=\arccos \left(\frac{8}{2 * \sqrt{2} * 4 * \sqrt{5}}\right)=\arccos \left(\frac{1}{\sqrt{10}}\right) ;$
$\gamma=\arccos \left(\frac{x_{A B} * x_{A C}+y_{A B} * y_{A C}}{|A B| *|A C|}\right)=\arccos \left(\frac{6 *(-2)+6 * 2}{\sqrt{6^{2}+6^{2}} * \sqrt{(-2)^{2}+2^{2}}}\right)=\arccos \left(\frac{0}{6 * \sqrt{2} * 2 * \sqrt{2}}\right)=$
$=\arccos (0)=90^{\circ}$;
We proved that the triangle ABC is right with $\gamma=90^{\circ}$. It means that segments AB and $A C$ are legs of the triangle $A B C$.

Thus, the area of the triangle ABC is
$S_{\triangle A B C}=\frac{1}{2} \cdot|A B| \cdot|A C|=\frac{1}{2} \cdot \sqrt{6^{2}+6^{2}} \cdot \sqrt{(-2)^{2}+2^{2}}=\frac{1}{2} \cdot 6 \sqrt{2} \cdot 2 \sqrt{2}=$
$=6 \cdot 2=12$ square units.

Answer: the points $(-1,-2),(5,4),(-3,0)$ are the vertices of a right triangle, and its area is 12 square units.

