Question \#8297 Let X be complex Banach space, $T \in B(X, X)$ and p a polynomial .Show that the equation $p(T) x=y$ has a unique solution x for every $y \in X$ if and only if $p(\lambda) \neq 0$, for all $\lambda \in \sigma(T)$.
Solution. If $p(\lambda) \neq 0$ for $\operatorname{\lambda in} \sigma(T)$ then the function $g=1 / p$ is holomorphic on $\sigma(T)$. Obviously $p g=1$, and by the Spectral Theorem $\mathrm{p}(\mathrm{T}) \mathrm{g}(\mathrm{T})=\mathrm{I}$, and so $p(T)$ is invertible, which entails the statement of the problem. On the other hand, if there is a unique solution then $p(T)$ is invertible. Assume that $p(\lambda)=0$ for some $\lambda \in \sigma(T)$, then it give us $p(z)=(z-\lambda) f(z)$, which gives $(T-I) f(T)=f(T)=f(T)(T-I)$: But since $T-I$ would not be invertible, we would have that $\mathrm{p}(\mathrm{T})$ is not invertible, and this is a contradiction and so $p(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$.

