Question #8297 Let X be complex Banach space, $T \in B(X, X)$ and p a polynomial .Show that the equation p(T)x = y has a unique solution x for every $y \in X$ if and only if $p(\lambda) \neq 0$, for all $\lambda \in \sigma(T)$.

Solution. If $p(\lambda) \neq 0$ for $\lambda in\sigma(T)$ then the function g = 1/p is holomorphic on $\sigma(T)$. Obviously pg = 1, and by the Spectral Theorem p(T)g(T) = I, and so p(T) is invertible, which entails the statement of the problem. On the other hand, if there is a unique solution then p(T) is invertible. Assume that $p(\lambda) = 0$ for some $\lambda \in \sigma(T)$, then it give us $p(z) = (z - \lambda)f(z)$, which gives (T - I)f(T) = f(T) = f(T)(T - I): But since T - I would not be invertible, we would have that p(T) is not invertible, and this is a contradiction and so $p(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$.