Answer on Question \# 82965, Math / Calculus
$\frac{1}{1+x^{2}}<\arctan x<x$ doesn't hold. For example for $x=0.1$ we have $\frac{1}{1+0.1^{2}}=1-\epsilon_{1}$ but $\arctan 0.1=0+\epsilon_{2}$, where ϵ_{1} and ϵ_{2} in the neighbourhood of zero. I think that meant the following inequality:
correct question 1.

$$
\forall x>0: \frac{x}{1+x^{2}}<\arctan x<x
$$

Proof. Note that $\arctan ^{\prime} x=\frac{1}{1+x^{2}}$.
Mean value theorem $\Rightarrow \exists a \in(0, x): \frac{\arctan x-\arctan 0}{x-0}=\frac{1}{1+a^{2}}$.
Then $\frac{1}{1+x^{2}}<\frac{1}{1+a^{2}}<1$ because $a \in(0, x)$.
So $\frac{1}{1+x^{2}}<\frac{\arctan x}{x}<1$ and by x-multiplying $\frac{x}{1+x^{2}}<\arctan x<x$ for all $x>0$.

