ANSWER on Question \#82963 - Math - Calculus
 QUESTION

Definite integral:

1. Integral of uppercase $1 / 2$ and lower case $1 / 4$. Arcsin $x d x$

$$
\int_{1 / 4}^{1 / 2} \arcsin x d x
$$

2. Integral of uppercase $1 / 2$ and lower case $1 / 4$. Arctan $x d x$

$$
\int_{1 / 4}^{1 / 2} \arctan x d x
$$

3. Integral of uppercase square root of pi/2 and lower case $0 x$ e raise to $2 x \cos x$ squared $d x$

$$
\int_{0}^{\sqrt{\pi / 2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x
$$

4. Integral of uppercase pi/2 and lower case 0 . x e raise to $2 x \cos x$ squared $d x$

$$
\int_{0}^{\pi / 2} x \cdot e^{2 x} \cdot \cos ^{2} x d x
$$

SOLUTION

1.

$$
\int_{1 / 4}^{1 / 2} \arcsin x d x=\left[\begin{array}{c}
u=\arcsin x \rightarrow d u=\frac{d x}{\sqrt{1-x^{2}}} \\
d v=d x \rightarrow v=x
\end{array}\right]=\left.(x \cdot \arcsin x)\right|_{1 / 4} ^{1 / 2}-\int_{1 / 4}^{1 / 2} \frac{x \cdot d x}{\sqrt{1-x^{2}}}=
$$

$=\left(\frac{1}{2} \cdot \arcsin \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arcsin \left(\frac{1}{4}\right)\right)-\int_{1 / 4}^{1 / 2} \frac{1}{2} \cdot \frac{d\left(x^{2}\right)}{\sqrt{1-x^{2}}}=\left(\frac{1}{2} \cdot \arcsin \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arcsin \left(\frac{1}{4}\right)\right)-\left.\left(\sqrt{1-x^{2}}\right)\right|_{1 / 4} ^{1 / 2}=$

$$
\begin{gathered}
=\left(\frac{1}{2} \cdot \arcsin \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arcsin \left(\frac{1}{4}\right)\right)-\left(\sqrt{1-\frac{1}{4}}-\sqrt{1-\frac{1}{16}}\right)= \\
=\left(\frac{1}{2} \cdot \arcsin \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arcsin \left(\frac{1}{4}\right)\right)-\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{15}}{4}\right)=\frac{1}{4} \cdot\left(2 \cdot \arcsin \left(\frac{1}{2}\right)-\arcsin \left(\frac{1}{4}\right)-2 \sqrt{3}+\sqrt{15}\right)
\end{gathered}
$$

Conclusion,

$$
\int_{1 / 4}^{1 / 2} \arcsin x d x=\frac{1}{4} \cdot\left(2 \cdot \arcsin \left(\frac{1}{2}\right)-\arcsin \left(\frac{1}{4}\right)-2 \sqrt{3}+\sqrt{15}\right) \approx 0.3008
$$

2.

$$
\begin{gathered}
\int_{1 / 4}^{1 / 2} \arctan x d x=\left[\begin{array}{c}
u=\arctan x \rightarrow d u=\frac{d x}{1+x^{2}} \\
d v=d x \rightarrow v=x
\end{array}\right]=\left.(x \cdot \arctan x)\right|_{1 / 4} ^{1 / 2}-\int_{1 / 4}^{1 / 2} \frac{x \cdot d x}{1+x^{2}}= \\
=\left(\frac{1}{2} \cdot \arctan \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arctan \left(\frac{1}{4}\right)\right)-\int_{1 / 4}^{1 / 2} \frac{1}{2} \cdot \frac{d\left(x^{2}\right)}{1+x^{2}}= \\
=\left(\frac{1}{2} \cdot \arctan \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arctan \left(\frac{1}{4}\right)\right)-\left.\frac{1}{2} \cdot\left(\ln \left|1+x^{2}\right|\right)\right|_{1 / 4} ^{1 / 2}= \\
=\left(\frac{1}{2} \cdot \arctan \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arctan \left(\frac{1}{4}\right)\right)-\frac{1}{2} \cdot\left(\ln \left|1+\frac{1}{4}\right|-\ln \left|1+\frac{1}{16}\right|\right)= \\
=\left(\frac{1}{2} \cdot \arctan \left(\frac{1}{2}\right)-\frac{1}{4} \cdot \arctan \left(\frac{1}{4}\right)\right)-\frac{1}{2} \cdot\left(\ln \left|\frac{5}{4}\right|-\ln \left|\frac{17}{16}\right|\right)= \\
=\frac{1}{4} \cdot\left(2 \cdot \arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{4}\right)-2 \cdot \ln \left|\frac{5}{4} \div \frac{17}{16}\right|\right)=\frac{1}{4} \cdot\left(2 \cdot \arcsin \left(\frac{1}{2}\right)-\arcsin \left(\frac{1}{4}\right)-2 \cdot \ln \left|\frac{5}{4} \cdot \frac{16}{17}\right|\right)= \\
=\frac{1}{4} \cdot\left(2 \cdot \arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{4}\right)-2 \cdot \ln \left|\frac{20}{17}\right|\right)
\end{gathered}
$$

Conclusion,

$$
\int_{1 / 4}^{1 / 2} \arctan x d x=\frac{1}{4} \cdot\left(2 \cdot \arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{4}\right)-2 \cdot \ln \left|\frac{20}{17}\right|\right) \approx 0.0891
$$

3, 4.

For part (3) and (4), first we find the indefinite integral

$$
\begin{aligned}
& \int x \cdot e^{2 x} \cdot \cos ^{2} x d x=\int x \cdot e^{2 x} \cdot\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot(1+\cos 2 x) d x= \\
& =\frac{1}{2} \cdot \int x \cdot e^{2 x} d x+\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=I_{1}+I_{2} \\
& I_{1}=\frac{1}{2} \cdot \int x \cdot e^{2 x} d x=\left[\begin{array}{c}
u=x \rightarrow d u=d x \\
d v=e^{2 x} d x \rightarrow v=\frac{1}{2} \cdot e^{2 x}
\end{array}\right]=\frac{1}{2} \cdot\left(x \cdot \frac{1}{2} \cdot e^{2 x}-\int \frac{1}{2} \cdot e^{2 x} d x\right)= \\
& =\frac{x \cdot e^{2 x}}{4}-\frac{1}{4} \cdot \frac{1}{2} \cdot e^{2 x}+C=\frac{x \cdot e^{2 x}}{4}-\frac{e^{2 x}}{8}+C=\frac{e^{2 x}}{8} \cdot(2 x-1)+C \\
& I_{1}=\frac{1}{2} \cdot \int x \cdot e^{2 x} d x=\frac{e^{2 x}}{8} \cdot(2 x-1)+C \\
& I_{2}=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=\left[\begin{array}{c}
2 x=t \rightarrow x=\frac{t}{2} \\
d x=\frac{d t}{2}
\end{array}\right]=\frac{1}{2} \cdot \int \frac{t}{2} \cdot e^{t} \cdot \cos t \frac{d t}{2}= \\
& =\frac{1}{8} \cdot \int t \cdot e^{t} \cdot \cos t d t=
\end{aligned}
$$

Now we'll use two formulas:

$$
\begin{aligned}
& \int e^{t} \cdot \cos t d t=\frac{e^{t}}{2} \cdot(\sin t+\cos t) \\
& \int e^{t} \cdot \sin t d t=\frac{e^{t}}{2} \cdot(\sin t-\cos t)
\end{aligned}
$$

Then,

$$
\begin{gathered}
I_{2}=\frac{1}{8} \cdot \int t \cdot e^{t} \cdot \cos t d t=\left[\begin{array}{c}
u=t \rightarrow d u=d t \\
d v=e^{t} \cdot \cos t d t \rightarrow v=\frac{e^{t}}{2} \cdot(\sin t+\cos t)
\end{array}\right]= \\
=\frac{1}{8} \cdot\left(\frac{t \cdot e^{t}}{2} \cdot(\sin t+\cos t)-\int \frac{e^{t}}{2} \cdot(\sin t+\cos t) d t\right)= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\int e^{t} \sin t d t-\int e^{t} \cos t d t\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(\sin t-\cos t)-\frac{e^{t}}{2} \cdot(\sin t+\cos t)\right)+C= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(\sin t-\cos t+\sin t+\cos t)\right)+C= \\
=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-\frac{e^{t}}{2} \cdot(2 \sin t)\right)=\frac{1}{16} \cdot\left(t e^{t}(\sin t+\cos t)-e^{t} \sin t\right)+C= \\
=\frac{e^{t}}{16} \cdot((t-1) \cdot \sin t+t \cdot \cos t)+C \\
I_{2}=\frac{1}{2} \cdot \int x \cdot e^{2 x} \cdot \cos (2 x) d x=\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))+C
\end{gathered}
$$

Conclusion,

$$
\int x \cdot e^{2 x} \cdot \cos ^{2} x d x=I_{1}+I_{2}=\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))+C
$$

3.

$$
\int_{0}^{\sqrt{\pi / 2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot(2 x \cdot \sin (2 x)+(2 x-1) \cdot \cos (2 x))\right)\right|_{0} ^{\sqrt{\pi / 2}} \approx 1.5727
$$

4.

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x= \\
=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot((2 x-1) \cdot \sin (2 x)+2 x \cdot \cos (2 x))\right)\right|_{0} ^{\frac{\pi}{2}} \\
=\left(\frac{e^{\pi}}{8} \cdot(\pi-1)+\frac{e^{\pi}}{16} \cdot((\pi-1) \cdot \sin (\pi)+\pi \cdot \cos (\pi))\right) \\
\\
-\left(\frac{e^{0}}{8} \cdot(0-1)+\frac{e^{0}}{16} \cdot((0-1) \cdot \sin (0)+0 \cdot \cos (0))\right)= \\
=\left(\frac{e^{\pi}}{8} \cdot(\pi-1)-\frac{e^{\pi}}{16} \cdot \pi\right)-\left(-\frac{1}{8}+0\right)=\frac{e^{\pi} \cdot(2 \pi-2-\pi)}{16}+\frac{1}{8}=\frac{1}{16} \cdot\left(2+e^{\pi} \cdot(\pi-2)\right) \approx 1.7761
\end{gathered}
$$

$$
\int_{0}^{\frac{\pi}{2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\frac{1}{16} \cdot\left(2+e^{\pi} \cdot(\pi-2)\right) \approx 1.7761
$$

ANSWER:

1.

$$
\int_{1 / 4}^{1 / 2} \arcsin x d x=\frac{1}{4} \cdot\left(2 \cdot \arcsin \left(\frac{1}{2}\right)-\arcsin \left(\frac{1}{4}\right)-2 \sqrt{3}+\sqrt{15}\right) \approx 0.3008
$$

2.

$$
\int_{1 / 4}^{1 / 2} \arctan x d x=\frac{1}{4} \cdot\left(2 \cdot \arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{4}\right)-2 \cdot \ln \left|\frac{20}{17}\right|\right) \approx 0.0891
$$

3.

$$
\int_{0}^{\sqrt{\pi / 2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\left.\left(\frac{e^{2 x}}{8} \cdot(2 x-1)+\frac{e^{2 x}}{16} \cdot(2 x \cdot \sin (2 x)+(2 x-1) \cdot \cos (2 x))\right)\right|_{0} ^{\sqrt{\pi / 2}} \approx 1.5727
$$

4.

$$
\int_{0}^{\frac{\pi}{2}} x \cdot e^{2 x} \cdot \cos ^{2} x d x=\frac{1}{16} \cdot\left(2+e^{\pi} \cdot(\pi-2)\right) \approx 1.7761
$$

