To solve an equation of the form $\mathbf{A} \overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}$ where \mathbf{A} is a matrix $\left[\begin{array}{ccc}2 & \mathbf{1} & -1 \\ \mathbf{1} & -\mathbf{2} & \mathbf{2} \\ \mathbf{3} & -\mathbf{1} & \mathbf{3}\end{array}\right]$
$\overrightarrow{\boldsymbol{b}}$ is a vector with unknown variables $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\overrightarrow{\mathbf{u}}$ is $\left[\begin{array}{c}11 \\ -2 \\ 5\end{array}\right]$
we multiply both sides of the equation (from the right side) by \mathbf{A}^{-1} (inverse of of \mathbf{A} $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \quad$) obtained by formula $\quad \mathbf{A}^{-1}=\frac{1}{|A|} \operatorname{Adj}(A)$
where $|A|$ is determinant of A

$$
|A|=2\left(\left|\begin{array}{ll}
-2 & 2 \\
-1 & 3
\end{array}\right|\right)-\left(\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right|\right)-\left(\left|\begin{array}{ll}
1 & -2 \\
3 & -1
\end{array}\right|\right)=-10
$$

$\operatorname{Adj}(\mathrm{A})$ is adjugate of A and it's obtained as follows:
Step 1. Matrix of minors of A

$$
\left\{\begin{array}{cc}
\left|\begin{array}{cc}
-2 & 2 \\
-1 & 3
\end{array}\right| & \left|\begin{array}{cc}
1 & 2 \\
3 & 3
\end{array}\right| \\
\left|\begin{array}{cc}
1 & -1 \\
-1 & 3
\end{array}\right| & \left|\begin{array}{cc}
2 & -1 \\
3 & 3
\end{array}\right| \\
\left|\begin{array}{cc}
1 & -2 \\
3 & -1
\end{array}\right| \\
-2 & 2
\end{array}\left|\left|\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right|\right| \begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\left|\left|\begin{array}{cc}
-4 & 1 \\
1 & -2
\end{array}\right|\right| \begin{array}{ccc}
-3 & 5 \\
2 & 9 & -5 \\
0 & 5 & -5
\end{array}\right]
$$

Step 2 . Change signs (multiply position-wise!)

$$
\left[\begin{array}{ccc}
-4 & -3 & 5 \\
2 & 9 & -5 \\
0 & 5 & -5
\end{array}\right]\left[\begin{array}{lll}
+1 & -1 & +1 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 3 & 5 \\
-2 & 9 & 5 \\
0 & -5 & -5
\end{array}\right]
$$

Step 3. Transpose

$$
\left[\begin{array}{ccc}
-4 & 3 & 5 \\
-2 & 9 & 5 \\
0 & -5 & -5
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-4 & -2 & 0 \\
3 & 9 & -5 \\
5 & 5 & -5
\end{array}\right]
$$

$$
\mathbf{A}^{-1}=\frac{1}{-10}\left[\begin{array}{ccc}
-4 & -2 & 0 \\
3 & 9 & -5 \\
5 & 5 & -5
\end{array}\right]=\left[\begin{array}{ccc}
0.4 & 0.2 & 0 \\
-0.3 & -0.9 & .5 \\
-0.5 & -0.5 & 0.5
\end{array}\right]
$$

$$
\begin{aligned}
& A^{-1} \mathrm{~A} \vec{b}=A^{-1} \vec{u} \\
& {\left[\begin{array}{ccc}
0.4 & 0.2 & 0 \\
-0.3 & -0.9 & .5 \\
-0.5 & -0.5 & 0.5
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & -2 & 2 \\
3 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
0.4 & 0.2 & 0 \\
-0.3 & -0.9 & .5 \\
-0.5 & -0.5 & 0.5
\end{array}\right]\left[\begin{array}{c}
11 \\
-2 \\
5
\end{array}\right]}
\end{aligned}
$$

by applying inverse matrix we obtain solution : $\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]$

