Answer on Question #82784 – Math – Abstract Algebra

Question

Let *R* be an integral Domain then deg(fg) = deg(f) + deg(g).

Solution

Let deg(f) = k and deg(g) = l.

If f = 0 then fg = 0 too, and $k = -\infty$, so:

$$deg(fg) = -\infty = -\infty + l = \deg(f) + \deg(g)$$

So let's suppose that $f \neq 0$ and $g \neq 0$, so $k, l \ge 0$, so:

$$f = \sum_{i=0}^{k} f_i x^i$$
, $g = \sum_{j=0}^{l} g_j x^j$

If h = fg, so $h_n = \sum_{i=0}^n f_i g_{n-i}$.

So, if n > k + l, then $h_n = 0$, because $f_i \neq 0$ only if $i \le k$ and then n - i > l so $g_{n-i} = 0$

But $h_{k+l} = f_k g_l \neq 0$ since $f_k \neq 0$, $g_l \neq 0$ and R is integral domain and it has no zero divisors.