Answer on Question \#82784 - Math - Abstract Algebra

Question

Let R be an integral Domain then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.

Solution

Let $\operatorname{deg}(f)=k$ and $\operatorname{deg}(g)=l$.
If $f=0$ then $f g=0$ too, and $k=-\infty$, so:

$$
\operatorname{deg}(f g)=-\infty=-\infty+l=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

So let's suppose that $f \neq 0$ and $\mathrm{g} \neq 0$, so $k, l \geq 0$, so:

$$
f=\sum_{i=0}^{k} f_{i} x^{i}, g=\sum_{j=0}^{l} g_{j} x^{j}
$$

If $h=f g$, so $h_{n}=\sum_{i=0}^{n} f_{i} g_{n-i}$.
So, if $n>k+l$, then $h_{n}=0$, because $f_{i} \neq 0$ only if $i \leq k$ and then $n-i>l$ so $g_{n-i}=0$
But $h_{k+l}=f_{k} g_{l} \neq 0$ since $f_{k} \neq 0, g_{l} \neq 0$ and R is integral domain and it has no zero divisors.

