Answer on Question \#82740 - Math - Abstract Algebra

Question

R be a commutative ring with identity iff $R[[X]]$ is commutative ring with identity.

Solution

1. Sufficiency.

Suppose $R[[x]]$ is commutative. Let $f: R \rightarrow R[[x]]$ is $f(r)=r+0 x+0 x^{2}+0 x^{3}+\cdots$. It is the ring homomorphism, since $f(r+s)=f(r)+f(x)$ and $f(r s)=f(r) f(s)$. Moreover, $f(x)$ is surjection, since if $r \neq s$ then $f(r) \neq f(s)$. So, R is isomorphic to the subring of constant terms of $R[[x]]$, and since $R[[x]]$ is commutative, then R is commutative too.
2. Necessity.

Suppose R is commutative. Let $f(x), g(x) \in R[[x]], \quad a(x)=f(x) g(x)$ and $b(x)=g(x) f(x)$. Then, since f_{n} and g_{n} belong to the commutative R :

$$
a_{n}=\sum_{i=0}^{n} f_{i} g_{n-i}=\sum_{i=0}^{n} g_{i} f_{n-i}=b_{n}
$$

So, all coefficients of $a(x)$ and $b(x)$ are equal, and then:

$$
f(x) g(x)=a(x)=b(x)=g(x) f(x)
$$

