Answer on Question # 82739, Math / Combinatorics | Number Theory

Question 1. $A = \{1, 2, 3, ..., 2016, 2017, 2018\}, S$ is a set whose elements are the subsets of A such that one element of S cannot be a subset of another element. Let, S has maximum possible number of elements. In this case, what is the number of elements of S?

Solution. Consider the general case: |A| = 2n. Say that two subsets of A are *incomparable* if neither is a subset of the other, and say that a subset of A is *large* if it has more than n elements. Let A be any pairwise incomparable family of subsets of A. For any set X let X_n be the family of subsets of X of cardinality n. Let

$$\mathcal{B} = \{ U \in \mathcal{A} \colon |U| \leq n \} \cup \bigcup \{ U_n \colon U \in \mathcal{A}, |U| > n \}.$$

 \mathcal{B} is simply the result of replacing each large member of \mathcal{A} by its *n*-element subsets. \mathcal{B} is pairwise incomparable, and clearly $|\mathcal{B}| \ge |\mathcal{A}|$. The strategy is easy: replace big sets with their *n*-element subsets, do an inverse, replace big sets again.

Now let $\mathcal{C} = \{A \setminus B : B \in \mathcal{B}\}$. \mathcal{C} is pairwise incomparable, $|\mathcal{C}| = |\mathcal{B}|$, and $|\mathcal{C}| \ge n$ for each $\mathcal{C} \in \mathcal{C}$.

Repeat the process used to go from \mathcal{A} to \mathcal{B} . Let

$$\mathcal{D} = (\mathcal{C} \cap A_n) \cup \bigcup \{C_n \colon C \in \mathcal{C} \setminus A_n\}.$$

Then $|\mathcal{D}| \ge |\mathcal{C}| \ge |\mathcal{A}|$, and $\mathcal{D} \subset A_n$, so $|\mathcal{A}| \le |A_n| = \binom{2n}{n}$, so $\binom{2n}{n}$ is indeed an upper bound on the size of any family of pairwise incomparable subsets of A. Since A_n is a pairwise incomparable family of cardinality $\binom{2n}{n}$, this upper bound is sharp.

Coming back to our case: $n = 1009, S = A_{1009}, |S| = \binom{2018}{1009}.$

Answer provided by https://www.AssignmentExpert.com