Answer on Question \# 82739, Math / Combinatorics | Number Theory

Question 1. $A=\{1,2,3, \ldots, 2016,2017,2018\}, S$ is a set whose elements are the subsets of A such that one element of S cannot be a subset of another element. Let, S has maximum possible number of elements. In this case, what is the number of elements of S ?

Solution. Consider the general case: $|A|=2 n$. Say that two subsets of A are incomparable if neither is a subset of the other, and say that a subset of A is large if it has more than n elements. Let \mathcal{A} be any pairwise incomparable family of subsets of A. For any set X let X_{n} be the family of subsets of X of cardinality n. Let

$$
\mathcal{B}=\{U \in \mathcal{A}:|U| \leqslant n\} \cup \bigcup\left\{U_{n}: U \in \mathcal{A},|U|>n\right\}
$$

\mathcal{B} is simply the result of replacing each large member of \mathcal{A} by its n-element subsets. \mathcal{B} is pairwise incomparable, and clearly $|\mathcal{B}| \geqslant|\mathcal{A}|$. The strategy is easy: replace big sets with their n-element subsets, do an inverse, replace big sets again.

Now let $\mathcal{C}=\{A \backslash B: B \in \mathcal{B}\} . \mathcal{C}$ is pairwise incomparable, $|\mathcal{C}|=|\mathcal{B}|$, and $|C| \geqslant n$ for each $C \in \mathcal{C}$.

Repeat the process used to go from \mathcal{A} to \mathcal{B}. Let

$$
\mathcal{D}=\left(\mathcal{C} \cap A_{n}\right) \cup \bigcup\left\{C_{n}: C \in \mathcal{C} \backslash A_{n}\right\}
$$

Then $|\mathcal{D}| \geqslant|\mathcal{C}| \geqslant|\mathcal{A}|$, and $\mathcal{D} \subset A_{n}$, so $|\mathcal{A}| \leqslant\left|A_{n}\right|=\binom{2 n}{n}$, so $\binom{2 n}{n}$ is indeed an upper bound on the size of any family of pairwise incomparable subsets of A. Since A_{n} is a pairwise incomparable family of cardinality $\binom{2 n}{n}$, this upper bound is sharp.

Coming back to our case: $n=1009, S=A_{1009},|S|=\binom{2018}{1009}$.

