Answer on Question \# 82704 - Math - Differential Equations

Question 1.

$$
y^{(4)}+2 y^{(3)}-3 y^{\prime \prime}=3 e^{2 x}+4 \sin x
$$

Answer.

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{x}+c_{3} x+c_{4}+\frac{3}{20} e^{2 x}+\frac{4}{5} \sin x+\frac{2}{5} \cos x,
$$

where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{R}$.
Problem solving steps. 1) First, solve the corresponding homogeneous equation

$$
y^{(4)}+2 y^{(3)}-3 y^{\prime \prime}=0:
$$

characteristic equation $\lambda^{4}+2 \lambda^{3}-3 \lambda^{2}=0, \lambda_{1}=-3, \lambda_{2}=1, \lambda_{3}=\lambda_{4}=0 ;$ then solutions are $y_{0}(x)=c_{1} e^{-3 x}+c_{2} e^{x}+c_{3} x+c_{4}$, where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{R}$.
2) Next, set up a trial function (partial solution) $y_{p}(x)=a e^{2 x}+b \sin x+c \cos x$ by copying the structure of RHS of the nonhomogeneous equation and substitute into the nonhomogeneous equation:

$$
\begin{gathered}
20 a e^{2 x}+(4 b+2 c) \sin x+(4 c-2 b) \cos x=3 e^{2 x}+4 \sin x, \\
a=\frac{3}{20}, b=\frac{4}{5}, c=\frac{2}{5}, \\
y_{p}(x)=\frac{3}{20} e^{2 x}+\frac{4}{5} \sin x+\frac{2}{5} \cos x .
\end{gathered}
$$

3) The general solutions to the nonhomogeneous equation are $y(x)=y_{0}(x)+y_{p}(x)$.
