Answer on Question #82698 – Math – Abstract Algebra

Question

Let R be a commutative ring with identity. A formal power series f(X) is invertible in R[[x]] if and only if the constant term f_0 has an inverse in R.

Solution

1. Necessity.

If f(X) is invertible, then exists $g(X) \in R[[x]]$, such that f(X)g(X) = 1, and the constant term of f(X)g(X) is equal to f_0g_0 , so $f_0g_0 = 1$, so f_0 is invertible.

2. Sufficiency.

Suppose f_0 is invertible, so $\frac{1}{f_0}$ exists in R.

Let's define g_n recursively, by induction: $g_0 \coloneqq \frac{1}{f_0}$, $g_n \coloneqq -\frac{1}{f_0} (\sum_{i=1}^n f_i g_{n-i})$. It can be defined because (n-i) < n, so all g_{n-i} are already defined.

We will prove that $g(x) = g_0 + g_1 x + g_2 x^2 + \cdots$ is the inverse of f(x), so f(x)g(x) = 1

Let h_i be the coefficient of the *n*-th power of the *x* in the f(x)g(x). Let's prove that

 $h_0 = 1$ and $h_i = 0$ for all $i \in \mathbf{N}$:

$$h_0 = f_0 g_0 = f_0 \cdot \frac{1}{f_0} = 1$$
$$h_n = \sum_{i=0}^n f_i g_{n-i} = f_0 g_n + \sum_{k=1}^n f_i g_{n-i} = f_0 \cdot (-\frac{1}{f_0}) \left(\sum_{i=1}^n f_i g_{n-i}\right) + \sum_{i=1}^n f_i g_{n-i} = 0$$

So, f(x)g(x) = 1.

Answer provided by https://www.AssignmentExpert.com