Answer on Question \#82698 - Math - Abstract Algebra

Question

Let R be a commutative ring with identity. A formal power series $f(X)$ is invertible in $R[[x]]$ if and only if the constant term f_{0} has an inverse in R.

Solution

1. Necessity.

If $f(X)$ is invertible, then exists $g(X) \in \mathrm{R}[[\mathrm{x}]]$, such that $f(X) g(X)=1$, and the constant term of $f(X) g(X)$ is equal to $\mathrm{f}_{0} \mathrm{~g}_{0}$, so $\mathrm{f}_{0} \mathrm{~g}_{0}=1$, so f_{0} is invertible.
2. Sufficiency.

Suppose f_{0} is invertible, so $\frac{1}{\mathrm{f}_{0}}$ exists in R.
Let's define g_{n} recursively, by induction: $\mathrm{g}_{0}:=\frac{1}{\mathrm{f}_{0}}, \mathrm{~g}_{\mathrm{n}}:=-\frac{1}{\mathrm{f}_{0}}\left(\sum_{i=1}^{n} f_{i} g_{n-i}\right)$. It can be defined because $(n-i)<n$, so all g_{n-i} are already defined.

We will prove that $g(x)=\mathrm{g}_{0}+\mathrm{g}_{1} x+\mathrm{g}_{2} x^{2}+\cdots$ is the inverse of $f(x)$, so $f(x) g(x)=1$ Let h_{i} be the coefficient of the n-th power of the x in the $f(x) g(x)$. Let's prove that $h_{0}=1$ and $h_{i}=0$ for all $i \in N:$

$$
\begin{gathered}
h_{0}=f_{0} \mathrm{~g}_{0}=f_{0} \cdot \frac{1}{\mathrm{f}_{0}}=1 \\
h_{n}=\sum_{i=0}^{n} f_{i} g_{n-i}=f_{0} g_{n}+\sum_{k=1}^{n} f_{i} g_{n-i}=f_{0} \cdot\left(-\frac{1}{\mathrm{f}_{0}}\right)\left(\sum_{i=1}^{n} f_{i} g_{n-i}\right)+\sum_{i=1}^{n} f_{i} g_{n-i}=0
\end{gathered}
$$

So, $f(x) g(x)=1$.

