Answer on Question \# 82678-Math - Real Analysis

Question 1. a) Is the sequence a Cauchy sequence or not?
b) $x_{n}=\frac{1}{2}\left(x_{n-2}+x_{n-1}\right), x_{1}<x_{2}$. Show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges and find the limit.

Solution. a) We can use the statement: a sequence converges if and only if it is a Cauchy sequence. Proof of this statement: http://www.math.stonybrook.edu/~mde/319S_08/ testsolII.pdf
(i) $\left\{n+\frac{1}{n}: n \in \mathbb{N}\right\}$ diverges because $n+\frac{1}{n} \rightarrow \infty, n \rightarrow \infty$. So it is not a Cauchy sequence.
(ii) $\left\{1+\frac{1}{2!}+\cdots+\frac{1}{n!}: n \in \mathbb{N}\right\}$ converges because we have the Taylor series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and for $x=1$ we have $1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots \rightarrow e-1, n \rightarrow \infty$. So it is a Cauchy sequence.
(iii) $\left\{(-1)^{n}: n \in \mathbb{N}\right\}$ diverges because $(-1)^{2 k} \rightarrow 1$ and $(-1)^{2 k-1} \rightarrow-1, k \rightarrow \infty$. So it is not a Cauchy sequence.
(iv) $\left\{n+\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ diverges because $n+\frac{(-1)^{n}}{n} \rightarrow \infty, n \rightarrow \infty$. So it is not a Cauchy sequence.
b) You can prove convergence using the Cauchy criterion - the distance between consecutive terms halves every term: $\left|x_{n}-x_{n-1}\right|=\frac{1}{2}\left|x_{n-1}-x_{n-2}\right|$, so iterating this equality to obtain $\left|x_{n}-x_{n-1}\right|=2^{-n+2}\left|x_{2}-x_{1}\right|$ we can use a geometric series bound (i.e. use $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$ for $\left.|r|<1\right)$ to show the sequence is Cauchy:
$\left|x_{n+m}-x_{n}\right| \leqslant \sum_{k=1}^{m}\left|x_{n+k}-x_{n+k-1}\right| \leqslant 2^{-n}\left|x_{2}-x_{1}\right| \sum_{k=1}^{m} 2^{-k} \leqslant 2^{-n}\left|x_{2}-x_{1}\right| \rightarrow 0, n \rightarrow \infty$.
To find the limit, write the sequence as a geometric series similar to the above:
$\lim _{n \rightarrow \infty} x_{n}=x_{1}+\sum_{n=2}^{\infty}\left(x_{n}-x_{n-1}\right)=x_{1}+\left(x_{2}-x_{1}\right) \sum_{n=2}^{\infty}(-2)^{-n+2}=x_{1}+\left(x_{2}-x_{1}\right) \frac{1}{1-(-2)}=\frac{x_{1}}{3}+\frac{2 x_{2}}{3}$.

