Answer on Question \#82677 - Math - Real Analysis

Question

Establish the convergence or divergence of the sequence (Xn) such that
I) $X n=1 / 1^{\wedge} 2+1 / 2^{\wedge} 2+1 / 3^{\wedge} 2+\ldots1 / n^{\wedge} 2$ for all n belongs to N.
ii) $X n=(1+1 / n)^{\wedge} n+1$
iii) $X n=(1+1 / n+1)^{\wedge} n$
Iv) $X n=(1-1 / n)^{\wedge} n$

Solution

1) $x_{n}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}$

It is obvious that this sequence is monotonous. Let us prove that it is bounded.

$$
\begin{aligned}
x_{n}<1+\frac{1}{1 \cdot 2} & +\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) \cdot n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdots+\frac{1}{n-1}-\frac{1}{n} \\
& =2-\frac{1}{n}<2
\end{aligned}
$$

Sequence is monotonous and bounded, and therefore converges.
2a) $x_{n}=\left(1+\frac{1}{n}\right)^{n}+1$,
$\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}+1=e+1$. Hence, it converges.
2b) $x_{n}=\left(1+\frac{1}{n}\right)^{n+1}$,
$\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n+1}=\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)=e \cdot 1=e$, hence it converges.
3a) $x_{n}=\left(1+\frac{1}{n}+1\right)^{n}$

$$
x_{n}=\left(2+\frac{1}{n}\right)^{n}>2^{n}
$$

x_{n} does not converge, or, in other words, converges to $+\infty$.
3b) $x_{n}=\left(1+\frac{1}{n+1}\right)^{n}$

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n+1}\right)^{n}=\lim _{n \rightarrow+\infty} \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}}=\frac{e}{1}=e
$$

It converges.
4) $x_{n}=\left(1-\frac{1}{n}\right)^{n}$

$$
\left(1-\frac{1}{n}\right)^{n}=\left(\frac{n-1}{n-1+1}\right)^{n}=\frac{1}{\left(1+\frac{1}{n-1}\right)^{n}}=\frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\left(1+\frac{1}{n-1}\right)^{\prime}}
$$

hence

$$
\lim _{n \rightarrow+\infty} x_{n}=\frac{1}{e \cdot 1}=\frac{1}{e} .
$$

Thus, x_{n} converges.

