Answer to Question #82609, Math / Abstract Algebra

Question. Prove that $\mathbb{R}^n/\mathbb{R}^m \cong \mathbb{R}^{n-m}$ as groups, where n, m belongs to \mathbb{N} such that $n \ge m$.

Answer. Define a projection group homomorphism $f : \mathbb{R}^n \to \mathbb{R}^{n-m}$ by

 $f((a_1, \ldots, a_m, a_{m+1}, \ldots, a_n)) = (a_{m+1}, \ldots, a_n).$

We will use the First Group Isomorphism Theorem.

- The kernel of f is the set of all elements a of \mathbb{R}^n having the form (a_1, \ldots, a_n) such that all of the equivalent conditions below hold:
 - $f((a_1, \ldots, a_m, a_{m+1}, \ldots, a_n)) = (0, \ldots, 0);$
 - $(a_{m+1}, \ldots, a_n) = (0, \ldots, 0);$
 - for all $i \in \{m+1, ..., n\}, a_i = 0;$
 - -a has the form $(a_1, \ldots, a_m, 0, \ldots, 0)$.

Clearly, ker f has dimension m and is \mathbb{R}^m viewed as a subgroup of \mathbb{R}^n .

• For every $(a_{m+1}, \ldots, a_n) \in \mathbb{R}^{n-m}$,

 $f((0,\ldots,0,a_{m+1},\ldots,a_n)) = (a_{m+1},\ldots,a_n).$

Hence f is surjective, and the range (image) of f is \mathbb{R}^{n-m} .

By the First Group Isomorphism Theorem, $\mathbb{R}^n / \mathbb{R}^m \cong \mathbb{R}^{n-m}$.