Answer to Question \#82609, Math / Abstract Algebra

Question. Prove that $\mathbb{R}^{n} / \mathbb{R}^{m} \cong \mathbb{R}^{n-m}$ as groups, where $n, m$ belongs to $\mathbb{N}$ such that $n \geq m$.

Answer. Define a projection group homomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-m}$ by

$$
f\left(\left(a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{n}\right)\right)=\left(a_{m+1}, \ldots, a_{n}\right) .
$$

We will use the First Group Isomorphism Theorem.

- The kernel of $f$ is the set of all elements $a$ of $\mathbb{R}^{n}$ having the form $\left(a_{1}, \ldots, a_{n}\right)$ such that all of the equivalent conditions below hold:
$-f\left(\left(a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{n}\right)\right)=(0, \ldots, 0) ;$
$-\left(a_{m+1}, \ldots, a_{n}\right)=(0, \ldots, 0)$;
- for all $i \in\{m+1, \ldots, n\}, a_{i}=0$;
- $a$ has the form $\left(a_{1}, \ldots, a_{m}, 0, \ldots, 0\right)$.

Clearly, ker $f$ has dimension $m$ and is $\mathbb{R}^{m}$ viewed as a subgroup of $\mathbb{R}^{n}$.

- For every $\left(a_{m+1}, \ldots, a_{n}\right) \in \mathbb{R}^{n-m}$,

$$
f\left(\left(0, \ldots, 0, a_{m+1}, \ldots, a_{n}\right)\right)=\left(a_{m+1}, \ldots, a_{n}\right)
$$

Hence $f$ is surjective, and the range (image) of $f$ is $\mathbb{R}^{n-m}$.
By the First Group Isomorphism Theorem, $\mathbb{R}^{n} / \mathbb{R}^{m} \cong \mathbb{R}^{n-m}$.

