Answer on Question \#82606 - Math - Abstract Algebra

Question

if $\mathrm{a}=\mathrm{b}(\bmod \mathrm{r})$ and $\mathrm{a}=\mathrm{b}(\bmod \mathrm{s})$ then $\mathrm{a}=\mathrm{b}(\bmod [\mathrm{r}, \mathrm{s}])$

Solution

We need to prove that if $a=b(\bmod r)$ and $a=b(\bmod s)$ then $a=b(\bmod [r, s])$.
Proof

$$
a=b(\bmod r) \Leftrightarrow a=b+r \cdot k_{1}, \quad \forall k_{1} \in \mathbb{Z}
$$

and $\exists l \in \mathbb{Z}: \quad[r, s]=r \cdot l$.
We need to prove that

$$
a=b(\bmod [r, s]) \Leftrightarrow a=b+[r, s] \cdot k_{2}, \quad \forall k_{2} \in \mathbb{Z}
$$

Just let $k_{1}=l \cdot k_{2}$. The first formula is correct for all k_{1}, and then for $k_{1}=l \cdot k_{2}$. Thus, the second formula is correct for all k_{2}.

