Answer to Question \#82580 - Math / Abstract Algebra

Question. Prove that field has no zero divisors.
Answer. Let K be a field and $a \in K$ be a zero divisor. By definition of zero divisor, there is $b \in K \backslash\{0\}$ such that $a b=0$, and $a \neq 0$. By definition of field, every non-zero element of K has an inverse, so there is b^{-1}. Multiplying $a b=0$ by b^{-1}, we have

$$
a=a b b^{-1}=0 \cdot b^{-1}=0,
$$

contradiction. Therefore, there are no zero divisors in K.

