Answer to Question #82580 - Math / Abstract Algebra

Question. Prove that field has no zero divisors.

Answer. Let K be a field and $a \in K$ be a zero divisor. By definition of zero divisor, there is $b \in K \setminus \{0\}$ such that ab = 0, and $a \neq 0$. By definition of field, every non-zero element of K has an inverse, so there is b^{-1} . Multiplying ab = 0 by b^{-1} , we have

$$a = abb^{-1} = 0 \cdot b^{-1} = 0,$$

contradiction. Therefore, there are no zero divisors in K.