ANSWER on Question \#82560 - Math - Linear Algebra
 QUESTION

Let

$$
P^{(e)}=\{p(x) \in \boldsymbol{R}[x] \mid p(x)=p(-x)\}
$$

Find $W=P^{(e)} \cap P_{3}$. Find a basis for W and find the dimension of W.

SOLUTION

P_{3} consists of all polynomials of degree 3, i.e. of all polynomials like

$$
p(x)=a x^{3}+b x^{2}+c x+d
$$

Since $p(x) \in W \rightarrow\left\{\begin{array}{c}p(x) \in P_{3} \\ p(x) \in P^{(e)}\end{array}\right.$. Then,

$$
\begin{gathered}
p(x) \in P^{(e)} \rightarrow p(x)=p(-x) \rightarrow \\
a x^{3}+b x^{2}+c x+d=a \cdot(-x)^{3}+b \cdot(-x)^{2}+c \cdot(-x)+d \rightarrow \\
a x^{3}+b x^{2}+c x+d=-a x^{3}+b x^{2}-c x+d \rightarrow \\
a x^{3}+b x^{2}+c x+d+a x^{3}-b x^{2}+c x-d=0 \rightarrow \\
2 a x^{3}+2 c x=0 \rightarrow\left\{\begin{array} { l }
{ 2 a = 0 } \\
{ 2 c = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
a=0 \\
c=0
\end{array}\right.\right.
\end{gathered}
$$

Conclusion,

$$
W=\left\{p(x)=b \cdot x^{2}+d \cdot 1, \quad \forall b, d \in \mathbb{R}\right\}
$$

$$
A \text { basis for } W \text { is }\left\{1, x^{2}\right\}
$$

Indeed, these two elements are linearly independent since

$$
a \cdot 1+b \cdot x^{2}=0 \quad \text { for all } x \in \mathbb{R} \rightarrow\left\{\begin{array}{l}
a=0 \\
b=0
\end{array}\right.
$$

And all elements of W are linear combinations of 1 and x^{2}.
Hence, the dimension of W is $\operatorname{dim}(W)=2$.

$$
\begin{gathered}
W=\left\{p(x)=b \cdot x^{2}+d \cdot 1, \quad \forall b, d \in \mathbb{R}\right\} \\
\text { A basis for } W \text { is }\left\{1, x^{2}\right\} \\
\operatorname{dim}(W)=2
\end{gathered}
$$

