Answer on Question #82544 – Math – Linear Algebra

Question

Let $V = \mathbf{R}^3$, $A = \{(x, y, z) | y = 0\}$ and $B = \{(x, y, z) | x = y = z\}$.

Check whether $\mathbf{R}^3 = A \oplus B$.

Solution

 $C = A \bigoplus B \text{ if and only if } C = A + B \text{ and } A \cap B = 0.$ 1) $(x, y, z) \in A \cap B$ if and only if $(x, y, z) \in A$ and $(x, y, z) \in B$, so
If $(x, y, z) \in B$ then x = y = z so (x, y, z) = (x, x, x) and if $(x, x, x) \in A$ then x = 0 so (x, y, z) = (0,0,0), so $A \cap B = 0$ 2) (x, y, z) = (x - y + y, y, z - y + y) = (x - y, 0, z - y) + (y, y, y) $(x - y, 0, z - y) \in A$ and $(y, y, y) \in B$ so $\mathbb{R}^3 = A + B$ So, both conditions are true and $\mathbb{R}^3 = A \oplus B.$

Answer: $\mathbf{R}^3 = A \oplus B$ holds true.