Answer to Question \#82540-Math / Abstract Algebra

Question. Prove that an element of an integral domain is a unit iff it generates the domain.

Answer. By " r generates I " here we mean that r generates an ideal I, in other words, I is the least ideal containing r.

Let R be an integral domain, and $a \in R$.

- (\Longrightarrow) Assume that a is a unit. Let I be an ideal of R containing a. Let $b \in R$. As $b=\left(b a^{-1}\right) a$ and $a \in I$, by the properties of ideal, $b \in I$. Hence $I=R$. As I was arbitrary, every ideal containing a is equal to R. Hence R is the least ideal containing a, in other words, a generates R.
- (\Longleftarrow) Assume that a generates R. The set $I=\{r a \mid r \in R\}$ is an ideal of R as shown below.
- If $r a, s a \in I$ for some $r, s \in R$, then $r a+s a=(r+s) a \in I$.
$-0=0 \cdot a \in I$.
- If $r a \in I$ for some $r \in R$, then $-(r a)=(-r) a \in I$.
- If $r a \in I$ for some $r \in R$, and $s \in R$, then $s(r a)=(s r) a \in I$.

Also $a=1 \cdot a \in I$. Hence I is an ideal containing a. As R is the least ideal containing a, I includes R, so I contains 1 . Hence there is $r \in R$ such that $1=r a$. In other words, a is a unit.

