# Answer on Question \#82539 - Math - Abstract Algebra 

## Question

Show that $\mathrm{d}: \mathrm{QQ}[\mathrm{x}] \backslash\{0\} \rightarrow \mathrm{NNU}\{0\}: \mathrm{d}(\mathrm{f})=2^{\wedge}(\operatorname{deg} \mathrm{f})$ is a Euclidean valuation on QQ[x].

## Solution

By the definition, we need to show that

1) $\mathrm{d}(\mathrm{f})<=\mathrm{d}(\mathrm{fg})$;
2) $\forall f, g \in Q[x] \exists q, r \in R: f=q g+r$ and either $\mathrm{r}=0$ or $\mathrm{d}(\mathrm{r})<\mathrm{d}(\mathrm{g})$.
1. $\operatorname{deg}(\mathrm{f})<\operatorname{deg}(\mathrm{fg})=\operatorname{deg}(\mathrm{f})+\operatorname{deg}(\mathrm{g})$, hence $d(f)=2^{\operatorname{deg}(f)}<=2^{\operatorname{deg}(f g)}=d(f g)$
2. There is division with remainder in $\mathrm{Q}[\mathrm{x}]$
$\forall f, g \in Q[x] \exists q, r \in R: f=q g+r$ such that either $\mathrm{r}=0$ or $\operatorname{deg}(\mathrm{r})<\operatorname{deg}(\mathrm{g})$.
Thus, $\forall f, g \in Q[x] \exists q, r \in R: f=q g+r$ such that either $\mathrm{r}=0$ or
$d(r)=2^{\operatorname{deg}(r)}<2^{\operatorname{deg}(g)}=d(g)$.
