Answer on Question #82539 – Math – Abstract Algebra

Question

Show that d:QQ[x]\{0} \rightarrow NNU {0}:d(f)=2^(deg f) is a Euclidean valuation on QQ[x].

Solution

By the definition, we need to show that

- 1) d(f)<=d(fg);
- 2) $\forall f, g \in Q[x] \exists q, r \in R: f = qg + r$ and either r=0 or d(r)<d(g).
- 1. $\deg(f) < \deg(fg) = \deg(f) + \deg(g)$, hence $d(f) = 2^{\deg(f)} < 2^{\deg(fg)} = d(fg)$
- 2. There is division with remainder in Q[x]
 ∀ f, g ∈ Q[x] ∃ q, r ∈ R: f = qg + r such that either r=0 or deg(r)<deg(g).
 Thus, ∀ f, g ∈ Q[x] ∃ q, r ∈ R: f = qg + r such that either r=0 or d(r) = 2^{deg(r)} < 2^{deg(g)} = d(g).