Suppose g and h are differentiable at a. Then, prove g / h is differentiable at a, and $(g / h)^{\prime}(a)=g^{\prime}(a) h(a)-g(a) h^{\prime}(a) /(h(a))^{2}$.

Suppose $f(x)=g(x) / h(x)$, where $h(x) \neq 0$ and g and h are differentiable.

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{g(x+\Delta x)}{h(x+\Delta x)}-\frac{g(x)}{h(x)}}{\Delta x}
$$

We pull out the $1 / \Delta x$ and combine the fractions in the numerator:

$$
=\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left(\frac{g(x+\Delta x) h(x)-g(x) h(x+\Delta x)}{h(x) h(x+\Delta x)}\right)
$$

Adding and subtracting $g(x) h(x)$ in the numerator:

$$
=\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left(\frac{g(x+\Delta x) h(x)-g(x) h(x)-g(x) h(x+\Delta x)+g(x) h(x)}{h(x) h(x+\Delta x)}\right)
$$

We factor this and multiply the $1 / \Delta x$ through the numerator:

$$
=\lim _{\Delta x \rightarrow 0} \frac{\frac{g(x+\Delta x)-g(x)}{\Delta x} h(x)-g(x) \frac{h(x+\Delta x)-h(x)}{\Delta x}}{h(x) h(x+\Delta x)}
$$

Now we move the limit through:

$$
=\frac{\lim _{\Delta x \rightarrow 0}\left(\frac{g(x+\Delta x)-g(x)}{\Delta x}\right) h(x)-g(x) \lim _{\Delta x \rightarrow 0}\left(\frac{h(x+\Delta x)-h(x)}{\Delta x}\right)}{h(x) \lim _{\Delta x \rightarrow 0} h(x+\Delta x)}
$$

By the definition of the derivative, the limits of difference quotients in the numerator are derivatives. The limit in the denominator is $h(x)$ because differentiable functions are continuous. Thus we get:

$$
=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{[h(x)]^{2}} .
$$

