

Answer on Question #82487 – Math – Real Analysis

Question

1) Let $x_1 = 8$ and $x_{n+1} = 2 + x_n/2$ for all n belongs to N . Show that X is bounded and monotone. Also find the limit.

Solution

1) If $x > 4$ then $2 + \frac{x}{2} > 4$, so $x_n > 4$ (bounded from below by 4)

$$\text{If } x_n > 4 \Rightarrow \frac{x_n}{2} > 2 \Rightarrow x_n - \frac{x_n}{2} > 2 \Rightarrow x_n > 2 + \frac{x_n}{2} \Rightarrow x_n > x_{n+1}$$

So x_n is monotone decreasing and bounded by 4.

Then it has some limit, say: $a = \lim_{n \rightarrow \infty} x_n$

$$\text{Then } a = \lim_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} x_{n+1} = 2 + \frac{a}{2}, \text{ so } a = 2 + a/2.$$

So $a = 4$.

Question

2) Let $x_1 > 1$ and $x_{n+1} = 2 - 1/x_n$ for all n belongs to N . Show that $\{x_n\}$ is bounded and monotone. Find the limits.

Solution

$$\text{If } x > 1 \Rightarrow \frac{1}{x} < 1 \Rightarrow -\frac{1}{x} > -1 \Rightarrow 2 - \frac{1}{x} > 1$$

So if $x_1 > 1$ then every $x_n > 1$

Let's prove, that for every $x > 0 \Rightarrow x > 2 - 1/x$

$$(x - 1)^2 > 0, \text{ so } x^2 > 2x - 1, \text{ so } x > 2 - 1/x$$

(we could divide both parts by x , because $x > 0$)

so $x_{n+1} < 2 - 1/x_n$. So x_n is monotone decreasing and bounded by 1 from below.

Then it has some limit, say: $a = \lim_{n \rightarrow \infty} x_n$

$$\text{Then } a = \lim_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} x_{n+1} = 2 - \frac{1}{a}$$

So $(a = 2 - 1/a)$, so $a = 1$.