Answer on Question \#82487 - Math - Real Analysis

Question

1) Let $x_{1}=8$ and $x_{n+1}=2+x_{n} / 2$ for all n belongs to N. Show that X is bounded and monotone. Also find the limit.

Solution

1) If $x>4$ then $2+\frac{x}{2}>4$, so $x_{n}>4$ (bounded from below by 4)

If $x_{n}>4 \Rightarrow \frac{x_{n}}{2}>2 \Rightarrow x_{n}-\frac{x_{n}}{2}>2 \Rightarrow x_{n}>2+\frac{x_{n}}{2} \Rightarrow x_{n}>x_{n+1}$
So x_{n} is monotone decreasing and bounded by 4 .
Then it has some limit, say: $a=\lim _{n \rightarrow \infty} x_{n}$
Then $a=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=2+\frac{a}{2}$, so $a=2+a / 2$.
So $a=4$.

Question

2) Let $x_{1}>1$ and $x_{n+1}=2-1 / x_{n}$ for all n belongs to N. Show that $\left\{x_{n}\right\}$ is bounded and monotone. Find the limits.

Solution

If $x>1 \Rightarrow \frac{1}{x}<1 \Rightarrow-\frac{1}{x}>-1 \Rightarrow 2-\frac{1}{x}>1$
So if $x_{1}>1$ then every $x_{n}>1$
Let's prove, that for every $x>0 \Rightarrow x>2-1 / x$
$(x-1)^{2}>0$, so $x^{2}>2 x-1$, so $x>2-1 / x$
(we could divide both parts by x, because $x>0$)
so $x_{n+1}<2-1 / x_{n}$. So x_{n} is monotone decreasing and bounded by 1 from below.
Then it has some limit, say: $a=\lim _{n \rightarrow \infty} x_{n}$
Then $a=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=2-\frac{1}{a}$
So ($\mathrm{a}=2-1 / \mathrm{a}$), so $a=1$.

