Answer to Question \#82485, Math / Real Analysis Question

(1) Use definition of limit of a sequence to establish the following limits
(A) $\lim \frac{n}{n^{2}+1}=0$
(B) $\lim \frac{2 n}{n+1}=2$
(C) $\lim \frac{n^{2}-1}{2 n^{2}+3}=\frac{1}{2}$
(D) Show that
(i) $\lim \frac{1}{3^{n}}=0$
(ii) $\lim \frac{2^{n}}{n!}=0$
(iii) $\lim (2 n)^{\frac{1}{n}}=1$

Solution

(A) Given $\frac{n}{n^{2}+1}$

$$
\frac{n}{n^{2}+1} \leq \frac{n}{n^{2}}=\frac{1}{n}
$$

Let $\epsilon>0$ be any number and we wish to choose N so that

$$
\frac{n}{n^{2}+1} \leq \frac{n}{n^{2}}=\frac{1}{n}<\epsilon \text { whenever } n>N
$$

Thus, the inequality holds if we choose $N>\frac{1}{\epsilon}$
(B) Let $\epsilon>0$ be any number and we wish to choose N so that

$$
\left|\frac{2 n}{n+1}-\frac{2(n+1)}{n+1}\right|=\left|\frac{-1}{n+1}\right|<\frac{1}{n}<\epsilon \quad \text { whenever } n>N
$$

Thus, the inequality holds if we choose $N>\frac{1}{\epsilon}$
(C) Let $\epsilon>0$ be any number and we wish to choose N so that

$$
\left|\frac{3 n+1}{2 n+5}-\frac{3}{2}\right|<\left|\frac{3 n+1}{2 n}-\frac{3 n}{2 n}\right|=\frac{1}{2 n}<\epsilon \text { whenever } n>N
$$

Thus, the inequality holds if we choose $N>\frac{1}{2 \epsilon}$
(D)
(i) Consider the result holds for n. Then

$$
\frac{1}{3^{n}}<1
$$

Let $\epsilon>0$ be any number and we wish to choose N so that

$$
\left|\frac{1}{3^{n}}\right|<1<\epsilon \text { whenever } n>N
$$

Thus, the inequality holds if we choose $N=1$
(ii) $\frac{2^{n}}{n!} \leq 2\left(\frac{2}{3}\right)^{n-2}$ if $n \geq 3$.

If $n=3$ then $\frac{8}{6} \leq 2\left(\frac{2}{3}\right)$
Consider the result holds for n. Then

$$
\frac{2\left(2^{n}\right)}{(n+1) n!} \leq \frac{2}{n+1} \cdot(2)\left(\frac{2}{3}\right)^{n-2} \leq(2)\left(\frac{2}{3}\right)^{n-1}
$$

Let $\epsilon>0$ be any number and we wish to choose N so that

$$
\left|\frac{2^{n}}{n!}\right|<\left|\frac{4}{n}\right|<\frac{4}{\left[\frac{4}{\epsilon}\right]+1}<\epsilon \quad \text { whenever } n>N
$$

Thus, the inequality holds if we choose $N=\left[\frac{4}{\epsilon}\right]+1$
(iii)
$2 \leq 2 n^{\frac{1}{n}} \leq 2 n$
$n^{1 / n}$ converges to 1 , so the limit $\lim (2 n)^{\frac{1}{n}}$ converges to 1 .
Hence,
$\lim (2 n)^{\frac{1}{n}}=1$

