Answer to Question \#82335, Math / Real Analysis

Question

(1) For a, b belongs to R
(i) $-(-a)=a$
(ii) $-1(a)=-a$
(iii) $-(a+b)=(-a)+(-b)$
(iv) $-(a)(-b)=a b$
(2) Find real number x such that $|x+1|+|x+2|<7$

Solution

(1) Given: $a, b \in R$
(i) Since $-a$ is additive inverse of a it satisfies $-a+a=a+(-a)=0$.That is a is an additive inverse of -a .

Since $-(-a)$ is additive inverse of $-a$ it satisfies

$$
-a+(-(-a))=-(-a)+(-a)=0
$$

As we know that additive inverse is unique, we get $a=-(-a)$
Hence, proved
(ii) To prove for every $a \in R$ the additive inverse of a is the product of additive inverse of 1 and a , it is sufficient to prove that $(-1) a+a=a+(-1) a=0$

We will show the second equality holds

$$
\begin{aligned}
a+(-1) a & =1 \cdot a+(-1) \cdot a & & \text { by multiplicative identity } \\
& =(1+(-1)) \cdot a & & \text { by distributivity } \\
& =0 \cdot a & & \text { by additive inverse } \\
& =0 & & \text { for every } a \in R, 0 \cdot a=a \cdot 0=0
\end{aligned}
$$

So both equalities hold and as $(-1) a$ and $-a$ are both additive inverse of $a,-1(a)=-a$ Hence, proved
(iii) Since $-(a+b)$ is an additive inverse of $a+b$. We have $-(a+b)+(a+b)=$ $(a+b)+-(a+b)$
We also have

$$
\begin{array}{rlrl}
(a+b)+((-a)+(-b))=((-a)+(-b))+(a+b) & & \text { by commutativity of addition } \\
& =(-a)+((-b)+a)+b & & \text { by associativity of addition } \\
& =(-a)+(a+(-b))+b & & \text { by commutativity of addition } \\
& =((-a)+a)+((-b)+b) & & \text { by associativity of addition } \\
& =0+0 & & \text { by additive inverse of a and } \mathrm{b} \\
& =0 & & \text { by additive identity }
\end{array}
$$

Hence, $(-a)+(-b)$ is also additive inverse of $a+b$.
By uniqueness of additive inverse we get $-(a+b)=(-a)+(-b)$
Hence, proved
(iv)

$$
\begin{aligned}
(-a)(-b) & =(-1(a))(-1(b)) & & -1(a)=-a \\
& =(-1)(a)(-1)(b) & & \text { by commutativity of multiplication } \\
& =(-1)(-1)(a)(b) & & \text { by associativity of multiplication } \\
& =(a)(b) & & (-1)(-1)=1
\end{aligned}
$$

Hence, proved
(2) $|x+1|+|x-2|<7$

Here we have two check points -1 and 2 .
Consider below three cases
Case (i): If $x<-1$ then $|x+1|+|x-2|$ expands as $-x-1-x+2<7$ gives $x>-3$
Hence, we get $-3<x<-1$
Case (ii): If $-1 \leq x<2$ then $|x+1|+|x-2|$ expands as $x+1-x+2<7$ gives $3<7$
which is true for all $x \in R$. Hence, for $-1 \leq x<2$ given inequality holds true.
Case (iii): If $x \geq 2$ then $|x+1|+|x-2|$ expands as $x+1+x-2<7$ gives $x<4$
Hence, we get $2 \leq x<4$
combine all three ranges we get
$(-3<x<-1)$ or $(-1 \leq x<2$ and true $\forall x \in R)$ or $(2 \leq x<4)$
That is $-3<x<4$
Hence, $-3<x<4$ or $x \in(-3,4)$

