QUESTION

Find a power series solution of the initial-value problem.

$$
\left(x^{2}+1\right) y^{\prime \prime}(x)+x y^{\prime}(x)+x y(x)=0, \quad y(0)=3, \quad y^{\prime}(0)=-1
$$

SOLUTION

Let

$$
\begin{gathered}
y(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y(0)=3=a_{0}+a_{1} \cdot 0+a_{2} \cdot 0^{2}+a_{3} \cdot 0^{3}+\cdots \rightarrow a_{0}=3 \\
y^{\prime}(0)=-1=a_{1}+2 \cdot a_{2} \cdot 0+3 \cdot a_{3} \cdot 0^{2}+\cdots \rightarrow a_{1}=-1
\end{gathered}
$$

Then,

$$
\begin{gathered}
y(x)=\sum_{n=0}^{+\infty} a_{n} x^{n} \rightarrow y^{\prime}(x)=\sum_{n=0}^{+\infty} a_{n} \cdot n \cdot x^{n-1} \equiv \sum_{n=1}^{+\infty} a_{n} \cdot n \cdot x^{n-1}=\left[\begin{array}{c}
n-1=k \\
n=k+1 \\
n=1 \rightarrow k=0
\end{array}\right] \rightarrow \\
y^{\prime}(x)=\sum_{k=0}^{+\infty} a_{(k+1)} \cdot(k+1) \cdot x^{k} \rightarrow y^{\prime}(x)=\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n} \\
y^{\prime}(x)=\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n} \rightarrow y^{\prime \prime}(x)=\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot n \cdot x^{n-1} \equiv \\
\equiv \sum_{n=1}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot n \cdot x^{n-1}=\left[\begin{array}{c}
n-1=k \\
n=k+1 \\
n=1 \rightarrow k=0
\end{array}\right]=\sum_{k=0}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k} \rightarrow \\
y^{\prime \prime}(x)=\sum_{k=0}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k} \rightarrow y^{\prime \prime}(x)=\sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n}
\end{gathered}
$$

Substitute all the found series in the original equation.

$$
\begin{gathered}
\left(x^{2}+1\right) y^{\prime \prime}(x)+x y^{\prime}(x)+x y(x)=0 \rightarrow \\
\left(x^{2}+1\right) \cdot \sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n}+x \cdot \sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n}+x \cdot \sum_{n=0}^{+\infty} a_{n} x^{n}=0 \rightarrow \\
\sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n+2}+\sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n}+ \\
+\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n+1}+\sum_{n=0}^{+\infty} a_{n} x^{n+1}=0
\end{gathered}
$$

In these series are different degrees of x. Let us make sure that all ranks have the same degrees.

$$
\begin{gathered}
\sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n+2}=\left[\begin{array}{c}
n+2=k \\
n=k-2 \\
n=2 \rightarrow k=2
\end{array}\right]=\sum_{k=2}^{+\infty} a_{k} \cdot k(k-1) \cdot x^{k} \rightarrow \\
\sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n+2}=\sum_{k=2}^{+\infty} a_{k} \cdot k(k-1) \cdot x^{k}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n}=a_{(0+2)} \cdot(0+2)(0+1) \cdot x^{0}+a_{(1+2)} \cdot(1+2)(1+1) \cdot x^{1}+ \\
& \quad+\sum_{k=2}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k}=2 a_{2}+6 a_{3} x+\sum_{k=2}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k} \rightarrow \\
& \sum_{n=0}^{+\infty} a_{(n+2)} \cdot(n+2)(n+1) \cdot x^{n}=2 a_{2}+6 a_{3} x+\sum_{k=2}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k}
\end{aligned}
$$

$$
\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n+1}=\left[\begin{array}{c}
n+1=m \\
n=m-1 \\
n=0 \rightarrow m=1
\end{array}\right]=\sum_{m=1}^{+\infty} a_{m} \cdot m \cdot x^{m}=a_{1} x+\sum_{m=2}^{+\infty} a_{m} \cdot m \cdot x^{m} \rightarrow
$$

$$
\sum_{n=0}^{+\infty} a_{(n+1)} \cdot(n+1) \cdot x^{n+1}=a_{1} x+\sum_{k=2}^{+\infty} a_{k} \cdot k \cdot x^{k}
$$

$$
\sum_{n=0}^{+\infty} a_{n} x^{n+1}=\left[\begin{array}{c}
n+1=m \\
n=m-1 \\
n=0 \rightarrow m=1
\end{array}\right]=\sum_{m=1}^{+\infty} a_{(m-1)} x^{m}=a_{(1-1)} x+\sum_{m=2}^{+\infty} a_{(m-1)} x^{m} \rightarrow
$$

$$
\sum_{n=0}^{+\infty} a_{n} x^{n+1}=a_{0} x+\sum_{k=2}^{+\infty} a_{(k-1)} x^{k}
$$

Our equation takes the form

Conclusion,

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\sum_{k=4}^{+\infty} a_{k} x^{k}=3-x-\frac{x^{3}}{3}+\sum_{k=4}^{+\infty} a_{k} x^{k}
$$

$$
\left\{\begin{array}{c}
a_{0}=3 \\
a_{1}=-1 \\
a_{2}=0 \\
a_{3}=-\frac{1}{3} \\
a_{(k+2)}=-\frac{k^{2} a_{k}+a_{(k-1)}}{(k+1)(k+2)}, \quad \forall k \geq 2 \\
y(x)=3-x-\frac{x^{3}}{3}+\sum_{k=4}^{+\infty} a_{k} x^{k}
\end{array}\right.
$$

$$
\begin{aligned}
& \sum_{k=2}^{+\infty} a_{k} \cdot k(k-1) \cdot x^{k}+2 a_{2}+6 a_{3} x+\sum_{k=2}^{+\infty} a_{(k+2)} \cdot(k+2)(k+1) \cdot x^{k}+ \\
& +a_{1} x+\sum_{k=2}^{+\infty} a_{k} \cdot k \cdot x^{k}+a_{0} x+\sum_{k=2}^{+\infty} a_{(k-1)} x^{k}=0 \rightarrow \\
& 2 a_{2}+\left(6 a_{3}+a_{1}+a_{0}\right) x+\sum_{k=2}^{+\infty}\left[k(k-1) a_{k}+k a_{k}+a_{(k-1)}+(k+2)(k+1) a_{(k+2)}\right] x^{k}=0 \rightarrow \\
& \left\{\begin{array}{c}
2 a_{2}=0 \\
6 a_{3}+a_{1}+a_{0}=0 \\
k(k-1) a_{k}+k a_{k}+a_{(k-1)}+(k+2)(k+1) a_{(k+2)}=0, \quad \forall k \geq 2
\end{array} \rightarrow\right. \\
& \left\{\begin{array}{c}
a_{0}=3 \\
a_{1}=-1 \\
a_{2}=0 \\
\left\{\begin{array}{c}
\\
6 a_{3}+3-1=0 \rightarrow a_{3}=-\frac{1}{3} \\
a_{(k+2)}=-\frac{k^{2} a_{k}+a_{(k-1)}}{(k+1)(k+2)}, \quad \forall k \geq 2
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{c}
a_{0}=3 \\
a_{1}=-1 \\
a_{2}=0 \\
a_{3}=-\frac{1}{3} \\
a_{(k+2)}=-\frac{k^{2} a_{k}+a_{(k-1)}}{(k+1)(k+2)}, \quad \forall k \geq 2 \\
y(x)=3-x-\frac{x^{3}}{3}+\sum_{k=4}^{+\infty} a_{k} x^{k}
\end{array}\right.
$$

