Answer on Question \#82242 - Math - Functional Analysis

Question

show that the addition of the type $\mathrm{dg} / \mathrm{dx}$ to the integrand function leaves the euler equation in the same form

Solution

We consider the functional

$$
J[y]=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

Suppose $J[y]$ has an extremum for the curve y. Then we have $\delta J[y]=0$, and therefore, the Euler-Lagrange equation

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0
$$

Now let's take a new function

$$
F\left(x, y, y^{\prime}\right)=f\left(x, y, y^{\prime}\right)+\frac{d g(x, y)}{d x}
$$

Note, that $g(x, y)$ must be function of only (x, y), and not of y^{\prime}. The new functional will be

$$
\begin{gathered}
J_{1}[y]=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x+\int_{x_{0}}^{x_{1}} \frac{d g(x, y)}{d x} d x=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x+\int_{x_{0}}^{x_{1}} d g(x, y) \\
=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x+g\left(x_{0}, y\left(x_{0}\right)\right)-g\left(x_{1}, y\left(x_{1}\right)\right)
\end{gathered}
$$

But $g\left(x_{0}, y\left(x_{0}\right)\right)$ and $g\left(x_{1}, y\left(x_{1}\right)\right)$ are constants, and their variations are null. Therefore, we have

$$
\delta J_{1}[y]=\delta \int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x=\delta \int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x=\delta J[y]
$$

That means

$$
\delta J[y]=0 \Rightarrow \delta J_{1}[y]=0
$$

and so the new Euler-Lagrange equations are

$$
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0
$$

As we can see this addition to the integrand function indeed leaves the Euler-Lagrange equation in the same form.

