Question

Solution

1. In △OAB, ∠AOB=90⁰. Let C be the point on the segment AB such that OC \perp -AB.

Prove

|CA|/|CB| = |OA|^2/|OB|^2

According to the triangles similarity theorem: If two angles of one triangle are equal to two angles of another, then the triangles are similar. $\triangle OAB$, $\triangle OAC$, $\triangle OBC -$ similar.

 $\angle AOB = \angle OCA = \angle OCB = 90^{\circ}$, $\angle OBA = \angle OBC = \angle AOC = \alpha$ and $\angle OAB = \angle OAC = \angle COB = 90^{\circ} - \alpha$.

So can write:

 $\tan \alpha = \frac{|OA|}{|OB|} = \frac{|CA|}{|OC|} = \frac{|OC|}{|CB|} \quad (1),$ $\sin^{2} \alpha + \cos^{2} \alpha = 1 \quad (2),$ $\frac{|CA|^{2}}{|OA|^{2}} + \frac{|CB|^{2}}{|OB|^{2}} = 1,$ $\frac{|CA|^{2}}{|OA|^{2}} = 1 - \frac{|CB|^{2}}{|OB|^{2}} = \frac{|OB|^{2} - |CB|^{2}}{|OB|^{2}},$ $\frac{|CA|^{2}}{|OB|^{2} - |CB|^{2}} = \frac{|OA|^{2}}{|OB|^{2}},$ where $|OB|^{2} - |CB|^{2} = |OC|^{2}$, so have $\frac{|CA|^{2}}{|OC|^{2}} = \frac{|OA|^{2}}{|OB|^{2}},$ from (1) obtain $|OC|^{2} = |CA| \cdot |CB|.$

As a result,

CA ²	_ CA _	0A ²
CA · CB	CB	0B ²