Question

1. In $\triangle O A B, \angle A O B=90^{\circ}$. Let C be the point on the segment $A B$ such that $O C \perp-A B$.

Prove
$|C A| /|C B|=|O A|^{\wedge} 2 /|O B|^{\wedge} 2$

Solution

A

0
B

According to the triangles similarity theorem: If two angles of one triangle are equal to two angles of another, then the triangles are similar. $\triangle O A B, \triangle O A C, \triangle O B C$ - similar.
$\angle \mathrm{AOB}=\angle \mathrm{OCA}=\angle \mathrm{OCB}=90^{\circ}, \angle \mathrm{OBA}=\angle \mathrm{OBC}=\angle \mathrm{AOC}=\alpha$ and $\angle \mathrm{OAB}=\angle \mathrm{OAC}=\angle \mathrm{COB}=90^{\circ}-\alpha$.
So can write:
$\tan \alpha=\frac{|\mathrm{OA}|}{|\mathrm{OB}|}=\frac{|\mathrm{CA}|}{|\mathrm{OC}|}=\frac{|\mathrm{OC}|}{|\mathrm{CB}|}$
$\sin ^{2} \alpha+\cos ^{2} \alpha=1$
$\frac{|C A|^{2}}{|O A|^{2}}+\frac{|C B|^{2}}{|O B|^{2}}=1$,
$\frac{|\mathrm{CA}|^{2}}{|\mathrm{OA}|^{2}}=1-\frac{|\mathrm{CB}|^{2}}{|\mathrm{OB}|^{2}}=\frac{|\mathrm{OB}|^{2}-|\mathrm{CB}|^{2}}{|\mathrm{OB}|^{2}}$,
$\frac{|\mathrm{CA}|^{2}}{|\mathrm{OB}|^{2}-|\mathrm{CB}|^{2}}=\frac{|\mathrm{OA}|^{2}}{|\mathrm{OB}|^{2}}$,
where $|O B|^{2}-|C B|^{2}=|O C|^{2}$, so have
$\frac{|\mathrm{CA}|^{2}}{|\mathrm{OC}|^{2}}=\frac{|\mathrm{OA}|^{2}}{|\mathrm{OB}|^{2}}$,
from (1) obtain $|O C|^{2}=|C A| \cdot|C B|$.

As a result,
$\frac{|\mathrm{CA}|^{2}}{|\mathrm{CA}| \cdot|\mathrm{CB}|}=\frac{|\mathrm{CA}|}{|\mathrm{CB}|}=\frac{|\mathrm{OA}|^{2}}{|\mathrm{OB}|^{2}}$.

