

Answer on Question #82224 – Math – Geometry

Question

1. In $\triangle OAB$, $\angle AOB = 90^\circ$. Let C be the point on the segment AB such that $OC \perp AB$.

Prove

$$|CA|/|CB| = |OA|^2/|OB|^2$$

Solution

According to the triangles similarity theorem: If two angles of one triangle are equal to two angles of another, then the triangles are similar. $\triangle OAB$, $\triangle OAC$, $\triangle OBC$ – similar.

$$\angle AOB = \angle OCA = \angle OCB = 90^\circ, \quad \angle OBA = \angle OBC = \angle AOC = \alpha \quad \text{and} \quad \angle OAB = \angle OAC = \angle COB = 90^\circ - \alpha.$$

So can write:

$$\tan \alpha = \frac{|OA|}{|OB|} = \frac{|CA|}{|OC|} = \frac{|OC|}{|CB|} \quad (1),$$

$$\sin^2 \alpha + \cos^2 \alpha = 1 \quad (2),$$

$$\frac{|CA|^2}{|OA|^2} + \frac{|CB|^2}{|OB|^2} = 1,$$

$$\frac{|CA|^2}{|OA|^2} = 1 - \frac{|CB|^2}{|OB|^2} = \frac{|OB|^2 - |CB|^2}{|OB|^2},$$

$$\frac{|CA|^2}{|OB|^2 - |CB|^2} = \frac{|OA|^2}{|OB|^2},$$

where $|OB|^2 - |CB|^2 = |OC|^2$, so have

$$\frac{|CA|^2}{|OC|^2} = \frac{|OA|^2}{|OB|^2},$$

from (1) obtain $|OC|^2 = |CA| \cdot |CB|$.

As a result,

$$\frac{|CA|^2}{|CA| \cdot |CB|} = \frac{|CA|}{|CB|} = \frac{|OA|^2}{|OB|^2}.$$