1. Find the number of positive and negative roots of the polynomial

$$
P(x)=x^{3}-3 x^{2}+4 x-5 \text { Find } \mathrm{P}(2) \text { and } \mathrm{P}^{\prime}(2) \text { using synthetic division method. }
$$

Answer:

As per Descartes's rule of signs, the number of positive roots is equal to change in sign of $P(x)$, or is less than that by an even number.

Given polynomial is $P(x)=x^{3}-3 x^{2}+4 x-5$
The signs of coefficients are in the form + - + -
Since there are 3 changes of sign, there are 3 or 1 positive real roots
Similarly, for the number of negative real roots we have to find $P(-x)$ and we have to count again
$P(-x)=-x^{3}-3 x^{2}-4 x-5$
(It is same as reversing the signs on terms of odd degree)
The signs of coefficients are in the form - - - -
Since there is no change of sign, there are zero negative real roots.
As the total number of zeros of $P(x)$ is 3 , that means it has 0 or 2 non-real Complex zeroes.
To evaluate $P(2)$
Using factor-remainder theorem we know that if a polynomial $P(x)$ is divides by $x-a$, the remainder is $P(a)$.

So the value of $P(2)$ by synthetic division as below

2	1	-3	4	-5
		2	-2	4
	1	-1	2	-1

Hence,
$P(2)=-1$
To evaluate $P^{\prime}(2)$
$P^{\prime}(x)=3 x^{2}-6 x+4$

2	3	-6	4
		6	0
	3	0	4

Hence, $P^{\prime}(2)=4$

