1. Find the number of positive and negative roots of the polynomial $P(x) = x^3 - 3x^2 + 4x - 5$ Find P(2) and P'(2) using synthetic division method.

Answer:

As per Descartes's rule of signs, the number of positive roots is equal to change in sign of P(x), or is less than that by an even number.

Given polynomial is $P(x) = x^3 - 3x^2 + 4x - 5$

The signs of coefficients are in the form + - + -

Since there are 3 changes of sign, there are 3 or 1 positive real roots

Similarly, for the number of negative real roots we have to find P(-x) and we have to count again

 $P(-x) = -x^3 - 3x^2 - 4x - 5$

(It is same as reversing the signs on terms of odd degree)

The signs of coefficients are in the form ---

Since there is no change of sign, there are zero negative real roots.

As the total number of zeros of P(x) is 3, that means it has 0 or 2 non-real Complex zeroes.

To evaluate P(2)

Using factor-remainder theorem we know that if a polynomial P(x) is divides by x - a, the remainder is P(a).

So the value of P(2) by synthetic division as below

2	1	-3	4	-5
		2	-2	4
	1	-1	2	<mark>-1</mark>
Hence, P(2) = -1				
To evaluate $P'(2)$				
$P'(x) = 3x^2 - 6x + 4$				
2	3	-6	4	
		6	0	
	3	0	4	

Hence, P'(2) = 4