Answer on Question \#82164 - Math - Abstract Algebra

Question

Find unit set of $\mathrm{Z}[\sqrt{ } \mathrm{m}]$, where m is not perfect square.

Solution

We have to find all integer solutions (x, y) to the Pell equation (1):

$$
\begin{aligned}
& a=x+y \sqrt{ } ; \\
& b=x-y \sqrt{ } ; \\
& a b=1 ; \\
& (x+y \sqrt{ })(x-y \sqrt{ } ; \\
& x^{\wedge} 2-m y^{\wedge} 2=1 .
\end{aligned}
$$

1) $m=-1$:

$$
x^{\wedge} 2+y^{\wedge} 2=1 \text {. (2) }
$$

This equation has four trivial solutions: $(\pm 1,0),(0, \pm 1)$ and 4 units:
$-1 ; 1 ;-i ; i$.
2) $m<-1, m \in Z$:

$$
x^{\wedge} 2+(-m) y^{\wedge} 2=1 .(3)
$$

In this case we have two trivial solutions: $(\pm 1,0)$ and 2 units.
-1; 1 .
3) In case of the positive non-perfect number for m we have two trivial solutions: ($\pm 1,0), 2$ units: $1 ; 1$, and infinite number of non-trivial solutions:

$$
\begin{aligned}
& (x ; y)=\left(\pm x_{n} ; \pm y_{n}\right) \text {, where: } \\
& x_{n}+y_{n} \vee m=\left(x_{0}+y_{0} V m\right)^{\wedge} n, n \in N .
\end{aligned}
$$

For example, if $m=2,3,5$:
a) $m=2$;

$$
x^{\wedge} 2-2 y^{\wedge} 2=1:
$$

$$
x_{n}+y_{n} \sqrt{ } 2=(3+2 \sqrt{ } 2)^{\wedge} n .
$$

b) $m=3$;

$$
\begin{aligned}
& x^{\wedge} 2-3 y^{\wedge} 2=1: \\
& x_{n}+y_{n} \sqrt{ } 3=(2+\sqrt{ } 3)^{\wedge} n .
\end{aligned}
$$

c) $m=5$;

$$
\begin{aligned}
& x^{\wedge} 2-5 y^{\wedge} 2=1: \\
& x_{n}+y_{n} \sqrt{ } 5=(9+4 \sqrt{ } 5)^{\wedge} n .
\end{aligned}
$$

