
ANSWER on Question #82163 – Math – Combinatorics – Number Theory 

QUESTION 

Prove that every composite number in ℤ is reducable.  

SOLUTION 

Theorem 1.1 (Unique Factorization in ℤ). Every integer 𝑛 > 1 can be written as a product of primes. Moreover, 

the prime factorization of n is unique: if 𝑛 = 𝑝1 · · · 𝑝𝑟 and 𝑛 = 𝑞1 · · · 𝑞𝑠 where the 𝑝𝑖’s and 𝑞𝑗 ’s are prime then 

𝑟 = 𝑠 and after relabeling the factors we have 𝑝𝑖 = 𝑞𝑖  for all 𝑖. 

Theorem 1.1 is really two statements about each 𝑛 > 1: (i) a prime factorization of 𝑛 exists and (ii) there is only 

one prime factorization for 𝑛 up to the order of multiplication of the prime factors. 

To prove Theorem 1.1, we will prove these two statements separately. 

When we talk about a product of primes in Theorem 1.1, we allow a “product” with a single term in it, so a prime 

number is a product of primes using only itself in the product. If we didn’t allow this, then we’d have to say 

every 𝑛 > 1 is a prime or a product of primes. By allowing a product with a single term, our language becomes 

simpler. 

Theorem 2.1. Every 𝑛 > 1 has a prime factorization: we can write 𝑛 = 𝑝1 · · · 𝑝𝑟, where the 𝑝𝑖 are prime 

numbers. 

Proof. We will use induction, but more precisely strong induction: assuming every integer between 1 and 𝑛 has 

a prime factorization we will derive that 𝑛 has a prime factorization. Our base case is 𝑛 = 2. This is a prime, so 

it is a product of primes by our convention that a prime is a product of primes with one term. 

Now assume 𝑛 > 2 and (here comes the strong inductive hypothesis) for all 𝑚 with 1 < 𝑚 < 𝑛 that 𝑚 is a 

product of primes. To show 𝑛 is a product of primes, we take cases depending on whether 𝑚 is prime or not. 

Case 1: The number 𝑛 is prime. 

In this case, 𝑛 is a product of primes with just one term. (This is the easy case.) 

Case 2: The number 𝑛 is not prime. 

Since 𝑛 > 1 and 𝑛 is not prime, there is some nontrivial factorization 𝑛 = 𝑎𝑏 where 1 < 𝑎 < 𝑛 and 1 < 𝑏 < 𝑛. 

By our strong inductive hypothesis, both 𝑎 and 𝑏 are products of primes. Since 𝑛 is the product of 𝑎 and 𝑏, and 



both 𝑎 and 𝑏 are products of primes, 𝑛 is a product of primes by stringing together the prime factorizations of 

𝑎 and 𝑏. More explicitly, writing 𝑎 = 𝑝1 · · · 𝑝𝑟 and 𝑏 = 𝑞1 · · · 𝑞𝑠 where 𝑝𝑖 and 𝑞𝑗 are all prime, we have  

𝑛 = 𝑎𝑏 = 𝑝1 · · · 𝑝𝑟 ⋅ 𝑞1 · · · 𝑞𝑠 

which is a product of primes. 

Q.E.D. 

Lemma 2.2. If 𝑝 is a prime number and 𝑝|𝑎𝑏 for some integers 𝑎 and 𝑏, then 𝑝|𝑎 or 𝑝|𝑏. 

Proof. We will assume 𝑝|𝑎𝑏 and the conclusion is false: 𝑝 does not divide 𝑎 or p does not divide 𝑏. If 𝑝 does not 

divide 𝑎 then (𝑝, 𝑎) = 1 because 𝑝 is prime. A basic consequence of Bezout’s identity tells us that from 𝑝|𝑎𝑏 

and (𝑝, 𝑎) = 1 we have 𝑝|𝑏. If 𝑝 does not divide 𝑏, then by switching the roles of 𝑎 and 𝑏 (which is okay since 

𝑎𝑏 = 𝑏𝑎) we can conclude that 𝑝|𝑎. 

Q.E.D. 

A generalization of Lemma 2.2 is that for any finite list of integers 𝑎1, . . . , 𝑎𝑘, if 𝑝|𝑎1 · · · 𝑎𝑘 then 𝑝|𝑎𝑖 for some 

𝑖. This is trivial for 𝑘 = 1, and for 𝑘 ≥ 2 it is true by induction on 𝑘 with Lemma 2.2 being the base case 𝑘 = 2. 

Now we can prove prime factorization is unique. 

Theorem 2.3. If 𝑝1 · · · 𝑝𝑟 = 𝑞1 · · · 𝑞𝑠 where the 𝑝𝑖’s and 𝑞𝑗’s are prime, then 𝑟 = 𝑠 and after relabeling the 

factors we have 𝑝𝑖 = 𝑞𝑖 for all 𝑖. 

Proof. The key mathematical step is this: when 𝑝1 · · · 𝑝𝑟 = 𝑞1 · · · 𝑞𝑠, 𝑝1 must equal some 𝑞𝑗. This is because 

𝑝1 · · · 𝑝𝑟 = 𝑞1 · · · 𝑞𝑠 ⟹ 𝑝1|𝑞1 · · · 𝑞𝑠 ⟹ 𝑝1|𝑞𝑗 for some 𝑗, where the second implication is the generalization 

of Lemma 2.2 that we mentioned above. That uses primality of 𝑝1. Since 𝑞𝑗 is prime and 𝑝1|𝑞𝑗 , we must have 

𝑝1 = 𝑞𝑗 (a prime has no factor greater than 1 other than itself). To prove our theorem, we will induct on the 

total number of prime factors in the two equal prime factorizations, which is (𝑟 + 𝑠). We allow repeated primes. 

The base case is (𝑟 + 𝑠) = 2, when the equal prime factorization turns into 𝑝1 = 𝑞1. Here the conclusion of the 

theorem is obvious (there is no relabeling needed, since each side has one factor). 

Suppose next that (𝑟 + 𝑠) > 2 and the theorem is true for any two equal prime factorizations for which the 

total number of primes being used is less than (𝑟 + 𝑠). If we have 𝑝1 · · · 𝑝𝑟 = 𝑞1 ⋯ 𝑞_𝑠 then 𝑟 > 1 and 𝑠 > 1: 

if 𝑟 = 1 or 𝑠 = 1 then one side is a prime number and therefore the other side has to be a prime number, so 

𝑟 = 𝑠 = 1, but (𝑟 + 𝑠) > 2. From 𝑝1 · · · 𝑝𝑟 = 𝑞1 · · · 𝑞𝑠 we explained at the start of the proof that 𝑝1 must be 

some 𝑞𝑗. By relabeling the factors on the right, which is okay since the order of multiplication doesn’t matter, 

we can assume 𝑝1 = 𝑞1. Then our equal prime factorization becomes 𝑝1𝑝2 · · · 𝑝𝑟 = 𝑝1𝑞2 · · · 𝑞𝑠. Canceling the 



common factor 𝑝1 on both sides, we get 𝑝2 · · · 𝑝𝑟 = 𝑞2 · · · 𝑞𝑠    (2.1). In this equation of equal prime 

factorizations, the total number of primes appearing on both sides is (𝑟 − 1) + (𝑠 − 1) = 𝑟 + 𝑠 − 2, which is 

less than (𝑟 + 𝑠). By our inductive hypothesis we conclude 𝑟 − 1 = 𝑠 − 1 (there are 𝑟 − 1 primes on the left 

and 𝑠 − 1 primes on the right), so 𝑟 = 𝑠, and after relabeling the primes in (2.1) we have 𝑝𝑖 = 𝑞𝑖  for all 𝑖 ≥ 2. 

Combining this with 𝑝1 = 𝑞1 we have 𝑝𝑖 = 𝑞𝑖  for all 𝑖. 

Q.E.D. 
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