ANSWER on Question #82163 — Math — Combinatorics — Number Theory

QUESTION
Prove that every composite number in Z is reducable.
SOLUTION

Theorem 1.1 (Unique Factorization in Z). Every integer n > 1 can be written as a product of primes. Moreover,
the prime factorization of nis unique: ifn = p; - - - p, andn = q, - - - g5 where the p;’sand q; ’s are prime then

r = s and after relabeling the factors we have p; = q; for all i.

Theorem 1.1 is really two statements about each n > 1: (i) a prime factorization of n exists and (ii) there is only

one prime factorization for n up to the order of multiplication of the prime factors.
To prove Theorem 1.1, we will prove these two statements separately.

When we talk about a product of primes in Theorem 1.1, we allow a “product” with a single termin it, so a prime
number is a product of primes using only itself in the product. If we didn’t allow this, then we’d have to say
everyn > 1 is a prime or a product of primes. By allowing a product with a single term, our language becomes

simpler.

Theorem 2.1. Every n > 1 has a prime factorization: we can write n = p; - - - p,,, where the p; are prime

numbers.

Proof. We will use induction, but more precisely strong induction: assuming every integer between 1 and n has
a prime factorization we will derive that n has a prime factorization. Our base case is n = 2. This is a prime, so

it is a product of primes by our convention that a prime is a product of primes with one term.

Now assume n > 2 and (here comes the strong inductive hypothesis) for all m with 1 <m <n that mis a
product of primes. To show n is a product of primes, we take cases depending on whether m is prime or not.

Case 1: The number n is prime.
In this case, n is a product of primes with just one term. (This is the easy case.)
Case 2: The number n is not prime.

Sincen > 1 and n is not prime, there is some nontrivial factorizationn = ab where1 <a <nand1 < b <n.

By our strong inductive hypothesis, both a and b are products of primes. Since n is the product of a and b, and



both a and b are products of primes, n is a product of primes by stringing together the prime factorizations of

a and b. More explicitly, writinga = p; - - - pr and b = q; - - - q; where p; and q; are all prime, we have

n=ab=py-proqi4s
which is a product of primes.
Q.E.D.
Lemma 2.2. If p is a prime number and p|ab for some integers a and b, then p|a or p|b.

Proof. We will assume p|ab and the conclusion is false: p does not divide a or p does not divide b. If p does not
divide a then (p,a) = 1 because p is prime. A basic consequence of Bezout’s identity tells us that from p|ab
and (p,a) = 1 we have p|b. If p does not divide b, then by switching the roles of a and b (which is okay since

ab = ba) we can conclude that p|a.
Q.E.D.

A generalization of Lemma 2.2 is that for any finite list of integers a4, . . ., ax, if p|a; - - - a, then p|a; for some
i. Thisis trivial for k = 1, and for k > 2 it is true by induction on k with Lemma 2.2 being the base case k = 2.

Now we can prove prime factorization is unique.

Theorem 2.3. If p; - - - p, = q; - - - qs Where the p;’s and q;’s are prime, then r = s and after relabeling the

factors we have p; = g; for all i.

Proof. The key mathematical step is this: when p, - - - p, = q; - - - q5, p1 must equal some g;. This is because
D1 Dr =q1° " qs = p1lq1 - - - 4 = p1lq; for some j, where the second implication is the generalization
of Lemma 2.2 that we mentioned above. That uses primality of p;. Since g; is prime and p;|q; , we must have
p1 = q; (a prime has no factor greater than 1 other than itself). To prove our theorem, we will induct on the
total number of prime factors in the two equal prime factorizations, which is (r + s). We allow repeated primes.
The base case is (r + s) = 2, when the equal prime factorization turns into p; = q;. Here the conclusion of the

theorem is obvious (there is no relabeling needed, since each side has one factor).

Suppose next that (r + s) > 2 and the theorem is true for any two equal prime factorizations for which the
total number of primes being used is less than (r + s). If we have p; - - - p = q1 - q_sthenr > 1and s > 1:
if r =1 or s = 1 then one side is a prime number and therefore the other side has to be a prime number, so
r=s=1but(r+s)>2.Fromp;---p, =q; - qs We explained at the start of the proof that p; must be
some q;. By relabeling the factors on the right, which is okay since the order of multiplication doesn’t matter,

we can assume p; = q;. Then our equal prime factorization becomes p1p, - - - P, = P19> * - - 5. Canceling the



common factor p; on both sides, we get p, - p, =q, - qs (2.1). In this equation of equal prime
factorizations, the total number of primes appearing on both sidesis (r—1) + (s — 1) =r + s — 2, which is
less than (r + s). By our inductive hypothesis we conclude r — 1 = s — 1 (there are r — 1 primes on the left
and s — 1 primes on the right), so r = s, and after relabeling the primes in (2.1) we have p; = q; for all i > 2.

Combining this with p; = q; we have p; = q; for all i.

Q.E.D.
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