ANSWER on Question #82163 – Math – Combinatorics – Number Theory

QUESTION

Prove that every composite number in \mathbb{Z} is reducable.

SOLUTION

Theorem 1.1 (Unique Factorization in \mathbb{Z}). Every integer n > 1 can be written as a product of primes. Moreover, the prime factorization of n is unique: if $n = p_1 \cdots p_r$ and $n = q_1 \cdots q_s$ where the p_i 's and q_j 's are prime then r = s and after relabeling the factors we have $p_i = q_i$ for all i.

Theorem 1.1 is really two statements about each n > 1: (i) a prime factorization of n exists and (ii) there is only one prime factorization for n up to the order of multiplication of the prime factors.

To prove Theorem 1.1, we will prove these two statements separately.

When we talk about a product of primes in Theorem 1.1, we allow a "product" with a single term in it, so a prime number is a product of primes using only itself in the product. If we didn't allow this, then we'd have to say every n > 1 is a prime or a product of primes. By allowing a product with a single term, our language becomes simpler.

Theorem 2.1. Every n > 1 has a prime factorization: we can write $n = p_1 \cdots p_r$, where the p_i are prime numbers.

Proof. We will use induction, but more precisely strong induction: assuming every integer between 1 and n has a prime factorization we will derive that n has a prime factorization. Our base case is n = 2. This is a prime, so it is a product of primes by our convention that a prime is a product of primes with one term.

Now assume n > 2 and (here comes the strong inductive hypothesis) for all m with 1 < m < n that m is a product of primes. To show n is a product of primes, we take cases depending on whether m is prime or not. Case 1: The number n is prime.

In this case, n is a product of primes with just one term. (This is the easy case.)

Case 2: The number *n* is not prime.

Since n > 1 and n is not prime, there is some nontrivial factorization n = ab where 1 < a < n and 1 < b < n. By our strong inductive hypothesis, both a and b are products of primes. Since n is the product of a and b, and both a and b are products of primes, n is a product of primes by stringing together the prime factorizations of a and b. More explicitly, writing $a = p_1 \cdots p_r$ and $b = q_1 \cdots q_s$ where p_i and q_j are all prime, we have

$$n = ab = p_1 \cdots p_r \cdot q_1 \cdots q_s$$

which is a product of primes.

Q.E.D.

Lemma 2.2. If p is a prime number and p|ab for some integers a and b, then p|a or p|b.

Proof. We will assume p|ab and the conclusion is false: p does not divide a or p does not divide b. If p does not divide a then (p, a) = 1 because p is prime. A basic consequence of Bezout's identity tells us that from p|ab and (p, a) = 1 we have p|b. If p does not divide b, then by switching the roles of a and b (which is okay since ab = ba) we can conclude that p|a.

Q.E.D.

A generalization of **Lemma 2.2** is that for any finite list of integers a_1, \ldots, a_k , if $p|a_1 \cdots a_k$ then $p|a_i$ for some *i*. This is trivial for k = 1, and for $k \ge 2$ it is true by induction on *k* with **Lemma 2.2** being the base case k = 2. Now we can prove prime factorization is unique.

Theorem 2.3. If $p_1 \cdots p_r = q_1 \cdots q_s$ where the p_i 's and q_j 's are prime, then r = s and after relabeling the factors we have $p_i = q_i$ for all i.

Proof. The key mathematical step is this: when $p_1 \cdots p_r = q_1 \cdots q_s$, p_1 must equal some q_j . This is because $p_1 \cdots p_r = q_1 \cdots q_s \Rightarrow p_1 | q_1 \cdots q_s \Rightarrow p_1 | q_j$ for some j, where the second implication is the generalization of **Lemma 2.2** that we mentioned above. That uses primality of p_1 . Since q_j is prime and $p_1 | q_j$, we must have $p_1 = q_j$ (a prime has no factor greater than 1 other than itself). To prove our theorem, we will induct on the total number of prime factors in the two equal prime factorizations, which is (r + s). We allow repeated primes. The base case is (r + s) = 2, when the equal prime factorization turns into $p_1 = q_1$. Here the conclusion of the theorem is obvious (there is no relabeling needed, since each side has one factor).

Suppose next that (r + s) > 2 and the theorem is true for any two equal prime factorizations for which the total number of primes being used is less than (r + s). If we have $p_1 \cdots p_r = q_1 \cdots q_r s$ then r > 1 and s > 1: if r = 1 or s = 1 then one side is a prime number and therefore the other side has to be a prime number, so r = s = 1, but (r + s) > 2. From $p_1 \cdots p_r = q_1 \cdots q_s$ we explained at the start of the proof that p_1 must be some q_j . By relabeling the factors on the right, which is okay since the order of multiplication doesn't matter, we can assume $p_1 = q_1$. Then our equal prime factorization becomes $p_1p_2 \cdots p_r = p_1q_2 \cdots q_s$. Canceling the

common factor p_1 on both sides, we get $p_2 \cdots p_r = q_2 \cdots q_s$ (2.1). In this equation of equal prime factorizations, the total number of primes appearing on both sides is (r-1) + (s-1) = r + s - 2, which is less than (r + s). By our inductive hypothesis we conclude r - 1 = s - 1 (there are r - 1 primes on the left and s - 1 primes on the right), so r = s, and after relabeling the primes in (2.1) we have $p_i = q_i$ for all $i \ge 2$. Combining this with $p_1 = q_1$ we have $p_i = q_i$ for all i.

Q.E.D.

Answer provided by https://www.AssignmentExpert.com