ANSWER on Question \#82163 - Math - Combinatorics - Number Theory

QUESTION

Prove that every composite number in \mathbb{Z} is reducable.

SOLUTION

Theorem 1.1 (Unique Factorization in \mathbb{Z}). Every integer $n>1$ can be written as a product of primes. Moreover, the prime factorization of n is unique: if $n=p_{1} \cdots p_{r}$ and $n=q_{1} \cdots q_{s}$ where the p_{i} 's and q_{j} 's are prime then $r=s$ and after relabeling the factors we have $p_{i}=q_{i}$ for all i.

Theorem 1.1 is really two statements about each $n>1$: (i) a prime factorization of n exists and (ii) there is only one prime factorization for n up to the order of multiplication of the prime factors.

To prove Theorem 1.1, we will prove these two statements separately.
When we talk about a product of primes in Theorem 1.1, we allow a "product" with a single term in it, so a prime number is a product of primes using only itself in the product. If we didn't allow this, then we'd have to say every $n>1$ is a prime or a product of primes. By allowing a product with a single term, our language becomes simpler.

Theorem 2.1. Every $n>1$ has a prime factorization: we can write $n=p_{1} \cdots p_{r}$, where the p_{i} are prime numbers.

Proof. We will use induction, but more precisely strong induction: assuming every integer between 1 and n has a prime factorization we will derive that n has a prime factorization. Our base case is $n=2$. This is a prime, so it is a product of primes by our convention that a prime is a product of primes with one term.

Now assume $n>2$ and (here comes the strong inductive hypothesis) for all m with $1<m<n$ that m is a product of primes. To show n is a product of primes, we take cases depending on whether m is prime or not. Case 1: The number n is prime.

In this case, n is a product of primes with just one term. (This is the easy case.)
Case 2: The number n is not prime.
Since $n>1$ and n is not prime, there is some nontrivial factorization $n=a b$ where $1<a<n$ and $1<b<n$. By our strong inductive hypothesis, both a and b are products of primes. Since n is the product of a and b, and
both a and b are products of primes, n is a product of primes by stringing together the prime factorizations of a and b. More explicitly, writing $a=p_{1} \cdots p_{r}$ and $b=q_{1} \cdots q_{s}$ where p_{i} and q_{j} are all prime, we have

$$
n=a b=p_{1} \cdots p_{r} \cdot q_{1} \cdots q_{s}
$$

which is a product of primes.
Q.E.D.

Lemma 2.2. If p is a prime number and $p \mid a b$ for some integers a and b, then $p \mid a$ or $p \mid b$.
Proof. We will assume $p \mid a b$ and the conclusion is false: p does not divide a or p does not divide b. If p does not divide a then $(p, a)=1$ because p is prime. A basic consequence of Bezout's identity tells us that from $p \mid a b$ and $(p, a)=1$ we have $p \mid b$. If p does not divide b, then by switching the roles of a and b (which is okay since $a b=b a)$ we can conclude that $p \mid a$.
Q.E.D.

A generalization of Lemma 2.2 is that for any finite list of integers a_{1}, \ldots, a_{k}, if $p \mid a_{1} \cdots a_{k}$ then $p \mid a_{i}$ for some i. This is trivial for $k=1$, and for $k \geq 2$ it is true by induction on k with Lemma 2.2 being the base case $k=2$. Now we can prove prime factorization is unique.

Theorem 2.3. If $p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$ where the p_{i} 's and q_{j} 's are prime, then $r=s$ and after relabeling the factors we have $p_{i}=q_{i}$ for all i.

Proof. The key mathematical step is this: when $p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$, p_{1} must equal some q_{j}. This is because $p_{1} \cdots p_{r}=q_{1} \cdots q_{s} \Rightarrow p_{1}\left|q_{1} \cdots q_{s} \Rightarrow p_{1}\right| q_{j}$ for some j, where the second implication is the generalization of Lemma 2.2 that we mentioned above. That uses primality of p_{1}. Since q_{j} is prime and $p_{1} \mid q_{j}$, we must have $p_{1}=q_{j}$ (a prime has no factor greater than 1 other than itself). To prove our theorem, we will induct on the total number of prime factors in the two equal prime factorizations, which is $(r+s)$. We allow repeated primes. The base case is $(r+s)=2$, when the equal prime factorization turns into $p_{1}=q_{1}$. Here the conclusion of the theorem is obvious (there is no relabeling needed, since each side has one factor).

Suppose next that $(r+s)>2$ and the theorem is true for any two equal prime factorizations for which the total number of primes being used is less than $(r+s)$. If we have $p_{1} \cdots p_{r}=q_{1} \cdots q_{-} s$ then $r>1$ and $s>1$: if $r=1$ or $s=1$ then one side is a prime number and therefore the other side has to be a prime number, so $r=s=1$, but $(r+s)>2$. From $p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$ we explained at the start of the proof that p_{1} must be some q_{j}. By relabeling the factors on the right, which is okay since the order of multiplication doesn't matter, we can assume $p_{1}=q_{1}$. Then our equal prime factorization becomes $p_{1} p_{2} \cdots p_{r}=p_{1} q_{2} \cdots q_{s}$. Canceling the
common factor p_{1} on both sides, we get $p_{2} \cdots p_{r}=q_{2} \cdots q_{s}$ (2.1). In this equation of equal prime factorizations, the total number of primes appearing on both sides is $(r-1)+(s-1)=r+s-2$, which is less than $(r+s)$. By our inductive hypothesis we conclude $r-1=s-1$ (there are $r-1$ primes on the left and $s-1$ primes on the right), so $r=s$, and after relabeling the primes in (2.1) we have $p_{i}=q_{i}$ for all $i \geq 2$. Combining this with $p_{1}=q_{1}$ we have $p_{i}=q_{i}$ for all i.

Q.E.D.

