Answer on Question \#82140 - Math - Trigonometry
 Question

From the top of the building 60 m high, the angle of elevation of the top of a vertical pole is 15 . At the bottom of the building the angle of elevation of the top of the pole is 35 . Find (a) the height of the pole and (b) the distance of the pole from the building.

Solution

Assume that our building and pole is not a tower of Pisa (building and pole are perpendicular to the ground). Point " A " represents the top of building; point, " B " represents the bottom of building; " C " represents the bottom of pole; " D " represents the top of the pole. Line $A B$ is the height of building (60 m); BC is the distance from building to the pole (let it be " d "); DC is the height of the pole (let it be " h "). Angle DBC is 35°. If we draw a line parallel to the ground (BC) from the top of the building (point A), we get a projection of building on the pole. This line is AE. Thus, the quadrilateral $A B C E$ is rectangle ($A B=E C, A E=B C$, all angles are 90°). Using the condition of the question it means that angle DAE is 15°.

Look at the triangle $D B C, \tan (\angle D B C)=\frac{D C}{B C}$. In our notations it is $\tan \left(35^{\circ}\right)=\frac{h}{d}$.
Now look at the triangle ADE. $\mathrm{AE}=\mathrm{BC}=\mathrm{d}, \mathrm{DE}=\mathrm{h}-60=>\tan \left(15^{\circ}\right)=\frac{h-60}{d}$.
Dividing both formulas gives: $\frac{\tan \left(15^{\circ}\right)}{\tan \left(35^{\circ}\right)}=\frac{h-60}{d} \cdot \frac{d}{h}=\frac{h-60}{h}=1-\frac{60}{h}$.
Now we can find an equation for $h: \frac{60}{h}=1-\frac{\tan \left(15^{\circ}\right)}{\tan \left(35^{\circ}\right)} \rightarrow h=\frac{60}{1-\frac{\left.\tan (15)^{5}\right)}{\tan \left(35^{5}\right)}}$
From the table or using a calculator we have values of tangents:

$$
\begin{array}{r}
\tan \left(15^{\circ}\right) \approx 0.268 ; \tan \left(35^{\circ}\right) \approx 0.7 ; \frac{\tan \left(15^{\circ}\right)}{\tan \left(35^{\circ}\right)} \approx 0.383 . \\
h=\frac{60}{1-0.383} \approx \frac{60}{0.617} \approx 97.24 \\
d=\frac{h}{\tan \left(35^{\circ}\right)} \rightarrow d \approx \frac{97.24}{0.7} \approx 138.91
\end{array}
$$

Answer: the height of pole is approximately 97.24 m and the distance to the pole is approximately 138.91 m .

