Question 1. If K is a constant, show that K(x-a) = o(x-a) if and only if K = 0.

Solution. The sufficiency is obvious, so prove the necessity. Recall that f(x) = o(g(x)) as $x \to a$ iff for any $\varepsilon > 0$ there is $\delta > 0$, such that $|f(x)| \leq \varepsilon |g(x)|$ for all x with $0 < |x - a| < \delta$. Use this definition in the case when f(x) = K(x - a) and g(x) = x - a: for any $\varepsilon > 0$ there is $\delta > 0$ such that $|K(x - a)| \leq \varepsilon |x - a|$ for all x, such that $0 < |x - a| < \delta$. Since |x - a| > 0, we can divide both sides of the above inequality by |x - a| and obtain $|K| < \varepsilon$. But this is true for any $\varepsilon > 0$. Therefore, |K| = 0, i.e. K = 0.

1