Question 1. If K is a constant, show that $K(x-a)=o(x-a)$ if and only if $K=0$.

Solution. The sufficiency is obvious, so prove the necessity. Recall that $f(x)=o(g(x))$ as $x \rightarrow a$ iff for any $\varepsilon>0$ there is $\delta>0$, such that $|f(x)| \leq \varepsilon|g(x)|$ for all x with $0<|x-a|<\delta$. Use this definition in the case when $f(x)=K(x-a)$ and $g(x)=x-a$: for any $\varepsilon>0$ there is $\delta>0$ such that $|K(x-a)| \leq \varepsilon|x-a|$ for all x, such that $0<|x-a|<\delta$. Since $|x-a|>0$, we can divide both sides of the above inequality by $|x-a|$ and obtain $|K|<\varepsilon$. But this is true for any $\varepsilon>0$. Therefore, $|K|=0$, i. e. $K=0$.

