Answer on Question \#81986 - Math - Combinatorics | Number Theory

Find the number of terms free from the radical sign in $\left\{(7)^{1 / 3}+(11)^{1 / 9}\right\}^{654}$.
According to the the binomial theorem, it is possible to expand any power of $\mathrm{x}+\mathrm{y}$ into a sum of the form

$$
(x+y)^{n}=\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x^{1} y^{n-1}+\binom{n}{n} x^{0} y^{n} .
$$

Let $x=(7)^{1 / 3}, y=(11)^{1 / 9}$.
As $6+5+4=15$ the number 654 is divisible by 3 but is not divisible by 9 . Free of radical terms will be the terms with power of y divisible by 9 including 0 . The corresponding power of x will be divisible by 3 . The 648 is divisible by $9,648 / 9=72,648+9=657>654$. Thus we have 72 integers from 1 to 654 which are divisible by 9 . As we must include 0 . The answer will be $72+1=73$.

