ANSWER ON QUESTION \#81951 - MATH - DIFFERENTIAL EQUATIONS

 QUESTION

 QUESTION}

Reduce the following PDE to a set of three ODEs by the method of separation of variables

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial V}{\partial r}\right)\right)+\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}+k^{2}=0
$$

SOLUTION

Probably, when making a question, the customer made a small mistake, the equation should look like

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial V}{\partial r}\right)\right)+\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}+k^{2} \cdot V=0
$$

I will solve the last equation.

Assume

$$
V(r, \theta, z)=R(r) \Theta(\theta) Z(z)
$$

Then,

$$
\begin{gathered}
\left.\Theta Z \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial R}{\partial r}\right)\right)+R Z\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}+R \Theta \frac{\partial^{2} Z}{\partial z^{2}}+k^{2} \cdot R \Theta Z=0 \right\rvert\, \div\left(\frac{1}{R \Theta Z}\right) \rightarrow \\
\frac{1}{\mathrm{R}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial R}{\partial r}\right)\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}+\frac{1}{Z} \frac{\partial^{2} Z}{\partial z^{2}}+k^{2}=0 \rightarrow \\
\frac{1}{\mathrm{R}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial R}{\partial r}\right)\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}+k^{2}=-\frac{1}{Z} \frac{\partial^{2} Z}{\partial z^{2}}
\end{gathered}
$$

In the above equation the left-hand side depends on r and θ, while the right-hand side depends on z. The only way these two members are going to be equal for all values of r, θ and z is when both of them are equal to a constant. Let us define such constant as $-l^{2}$.

With this choice for the constant, we obtain:

$$
\frac{d^{2} Z}{d z^{2}}-l^{2} \cdot Z=0
$$

The general solution of this equation is:

$$
Z(z)=A_{1} e^{l z}+A_{2} e^{-l z}
$$

Such a solution, when considering the specific boundary conditions, will allow $Z(z)$ to go to zero for z going to $\pm \infty$, which makes physical sense. If we had given the constant a value of l^{2}, we would have had periodic trigonometric functions, which do not tend to zero for z going to infinity.

Once sorted the z-dependency, we need take care of r and θ.

$$
\begin{gathered}
\frac{1}{\mathrm{R}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial R}{\partial r}\right)\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}+k^{2}=-l^{2} \rightarrow \\
\frac{1}{\mathrm{R}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot\left(\frac{\partial R}{\partial r}\right)\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}=-\left(k^{2}+l^{2}\right) \rightarrow \\
\frac{1}{R} \frac{1}{r}\left(\frac{\partial R}{\partial r}+r \cdot \frac{\partial^{2} R}{\partial r^{2}}\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}=-\left(k^{2}+l^{2}\right) \rightarrow \\
\left.\frac{1}{R} \frac{\partial^{2} R}{\partial r^{2}}+\frac{1}{R} \frac{1}{r} \frac{\partial R}{\partial r}+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right) \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}=-\left(k^{2}+l^{2}\right) \right\rvert\, \times\left(r^{2}\right) \rightarrow \\
\frac{r^{2}}{R} \frac{\partial^{2} R}{\partial r^{2}}+\frac{r}{R} \frac{\partial R}{\partial r}+\left(k^{2}+l^{2}\right) r^{2}=\frac{1}{\Theta} \cdot \frac{\partial^{2} \Theta}{\partial \theta^{2}}
\end{gathered}
$$

Again we are in a situation where the only way a solution can be found for the above equation is when both members are equal to a constant. This time we select a positive constant, which we call m^{2}. The equation for Θ becomes, for:

$$
\frac{d^{2} \Theta}{d \theta^{2}}+m^{2} \Theta=0
$$

This solution is well suited, to describe the variation for an angular coordinate like θ. Had we chosen the set both members equal to a negative number, we would have ended up with exponential functions with a different value assigned to $\Theta(\theta)$ for each 360° turn, a clear non-physical solution.

Last to be examined is the r-dependency. We have:

$$
\begin{gathered}
\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\frac{r}{R} \frac{d R}{d r}+\left(k^{2}+l^{2}\right) r^{2}=m^{2} \rightarrow \\
r^{2} \cdot \frac{d^{2} R}{d r^{2}}+r \cdot \frac{d R}{d r}+\left[\left(k^{2}+l^{2}\right) r^{2}-m^{2}\right] \cdot R=0
\end{gathered}
$$

This equation is a well-known equation of mathematical physics called parametric Bessel's equation. With sample linear transformation of variable, $x=r \cdot \sqrt{\left(k^{2}+l^{2}\right)}$, equation is readily changed into a Bessel's equation:

$$
\begin{gathered}
\frac{d R}{d r}=\frac{d R}{d x} \cdot \frac{d x}{d r}=\sqrt{k^{2}+l^{2}} \cdot R^{\prime} \\
\frac{d^{2} R}{d r^{2}}=\frac{d}{d x}\left(\sqrt{k^{2}+l^{2}} \cdot R^{\prime}\right) \cdot \frac{d x}{d r}=\left(k^{2}+l^{2}\right) \cdot R^{\prime \prime}
\end{gathered}
$$

Then,

$$
\begin{gathered}
r^{2} \cdot \frac{d^{2} R}{d r^{2}}+r \cdot \frac{d R}{d r}+\left[\left(k^{2}+l^{2}\right) r^{2}-m^{2}\right] \cdot R=0 \rightarrow \\
\frac{x^{2}}{\left(k^{2}+l^{2}\right)} \cdot\left(k^{2}+l^{2}\right) \cdot R^{\prime \prime}+\frac{x}{\sqrt{k^{2}+l^{2}}} \cdot \sqrt{k^{2}+l^{2}} \cdot R^{\prime}+\left[x^{2}-m^{2}\right] \cdot R=0 \rightarrow \\
x^{2} \cdot R^{\prime \prime}+x \cdot R^{\prime}+\left[x^{2}-m^{2}\right] \cdot R=0
\end{gathered}
$$

where $R^{\prime \prime}$ and R^{\prime} indicate the first and second derivatives with respect to x.
In what follows we will assume that m is a real, non-negative number.
Linearly independent solutions are typically denoted by $J_{m}(x)$ (Bessel Functions) and $N_{m}(x)$ (Neumann Functions).

