ANSWER ON QUESTION #81951 — MATH — DIFFERENTIAL EQUATIONS
QUESTION

Reduce the following PDE to a set of three ODEs by the method of separation of variables
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Probably, when making a question, the customer made a small mistake, the equation should look like
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| will solve the last equation.
Assume
V(r,0,z) = R(r)0(0)Z(z)

Then,
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In the above equation the left-hand side depends on r and 6, while the right-hand side depends on z. The only
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way these two members are going to be equal for all values of r, 8 and z is when both of them are equal to a

constant. Let us define such constant as —1?.
With this choice for the constant, we obtain:
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The general solution of this equation is:
Z(z) = Aje"? + Ae™

Such a solution, when considering the specific boundary conditions, will allow Z(z) to go to zero for z going to
+ 00, which makes physical sense. If we had given the constant a value of [?, we would have had periodic

trigonometric functions, which do not tend to zero for z going to infinity.

Once sorted the z —dependency, we need take care of r and 6.
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Again we are in a situation where the only way a solution can be found for the above equation is when both
members are equal to a constant. This time we select a positive constant, which we call m?. The equation for ®

becomes, for:
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This solution is well suited, to describe the variation for an angular coordinate like 8. Had we chosen the set
both members equal to a negative number, we would have ended up with exponential functions with a different

value assigned to ©(0) for each 360° turn, a clear non-physical solution.

Last to be examined is the r —dependency. We have:
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This equation is a well-known equation of mathematical physics called parametric Bessel’s equation. With
sample linear transformation of variable, x = r - /(k? + [?), equation is readily changed into a Bessel’s

equation:
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where R and R’ indicate the first and second derivatives with respect to x.

In what follows we will assume that m is a real, non-negative number.

Linearly independent solutions are typically denoted by J,,(x) (Bessel Functions) and N,,(x)(Neumann

Functions).
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