Answer on Question \#81889 - Math - Statistics and Probability

Question

Two players A and B toss a coin alternately. A begins the game and the player who first throws heads is the winner. B's coin is fair but A's is biased and has probability ' p ' of showing heads. Find the value of ' p ' so that the game is equiprobable to both players.

Solution

Let p be the probability of showing heads for A's coin.
Player A can win:
on his first throw - with probability p;
on his second throw - with probability $(1-p) \cdot \frac{1}{2} \cdot p=\left(\frac{1-p}{2}\right)^{1} \cdot p$ (A throws tails - probability $1-p, \mathrm{~B}$ throws tails - probability $\frac{1}{2}$, A throws heads);
on his third throw - with probability $(1-p) \cdot \frac{1}{2} \cdot(1-p) \cdot \frac{1}{2} \cdot p=\left(\frac{1-p}{2}\right)^{2} \cdot p \quad$ (A throws tails, B throws tails, A throws tails, B throws tails, A throws heads);
on his n -th throw - with probability $(1-p) \cdot \frac{1}{2} \cdot(1-p) \cdot \frac{1}{2} \cdot \ldots \cdot(1-p) \cdot \frac{1}{2} \cdot p=\left(\frac{1-p}{2}\right)^{n-1} \cdot p$ (A throws tails, B throws tails, ..., A throws tails, B throws tails, A throws heads).

Then the probability to win for A is

$$
\sum_{n=1}^{\infty} p\left(\frac{1-p}{2}\right)^{n-1}=p \cdot \frac{1}{1-\frac{1-p}{2}}=\frac{2 p}{1+p}
$$

(we applied the formula for the sum of geometric series).
Since the game is equiprobable to both players, this probability should equal $\frac{1}{2}$:

$$
\frac{2 p}{1+p}=\frac{1}{2}
$$

from which it follows that

$$
p=\frac{1}{3}
$$

Answer: $p=\frac{1}{3}$.

